Abstract
Smart object waste classification is relatively essential for protecting the environment and saving resources. This is considered a vital pathway towards sustainability. In waste classification, we see that it is challenging to detect waste of small visual objects with low resolutions that directly affect the overall performance of waste classification. While current visual object detection algorithms focus on the exploration of larger objects, the development of small object detection is being expanded relatively slowly due to the inability to acquire more visual information. In this paper, we propose a novel method combining contextual information and multiscale learning to improve small object detection performance in waste classification by enabling small object detection to obtain more feature information at high resolution. Furthermore, based on the advantages of parallel computing in Transformers, we utilize the DETR model to explore our method. The experimental results show that our method achieves high accuracy in the detection of a small object in waste.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv (2020)
Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Chen, S.S., et al.: Carbon emissions under different domestic waste treatment modes induced by garbage classification: case study in pilot communities in Shanghai, China. Sci. Total Environ. 717, 137193 (2020)
Cui, L., et al.: Context-aware block net for small object detection. IEEE Trans. Cybern. 52(4), 2300–2313 (2022)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, pp. 886–893 (2005)
Dosovitskiy, A.,et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv (2020)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR, pp. 580–587 (2014)
He, K.M., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE ICCV, pp. 2961–2969 (2017)
He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv (2019)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1–9 (2012)
Li, J., et al.: Attentive contexts for object detection. IEEE Trans. Multimed. 19(5), 944–954 (2016). https://doi.org/10.1109/TMM.2016.2642789
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Z., Mao, H.Z., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie. S.N.: A ConvNet for the 2020s. arXiv (2022)
Li, Z., Zhou, F.: FSSD: feature fusion single shot multibox detector. arXiv:1712.00960 (2017)
Luo, Z., Nguyen, M., Yan, W.: Sailboat detection based on automated search attention mechanism and deep learning models. In: IEEE IVCNZ (2021)
Nie, Z.F., Duan, W.J., Li, X.D.: Domestic garbage recognition and detection based on Faster R-CNN. In: Journal of Physics: Conference Series (2021)
Oliva, A., Torralba, A.: The role of context in object recognition. Trends Cogn. Sci. 11(12), 520–527 (2017)
Pan, C., Yan, W.: A learning-based positive feedback in salient object detection. In: IEEE IVCNZ (2018)
Pan, C., Yan, W.Q.: Object detection based on saturation of visual perception. Multimed. Tools Appl. 79(27–28), 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x
Pan, C., Liu, J., Yan, W., Zhou, Y.: Salient object detection based on visual perceptual saturation and two-stream hybrid networks. IEEE Trans. Image Process. 30, 4773–4787 (2021)
Qi, J., Nguyen, M., Yan, W.: Waste classification from digital images using ConvNeXt. In: PSIVT (2022)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE CVPR, pp. 7263–7271 (2017)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE CVPR, pp. 658–666 (2019)
Shen, D., Xin, C., Nguyen, M., Yan, W.: Flame detection using deep learning. In: ICCAR (2018)
Vaswani, A.,et al.: Attention is all you need. In: NIPS (2019)
Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using DropConnect. In: ICML, pp. 1058–1066 (2013)
Yin, X., Goudriaan, J.A.N., Lantinga, E.A., Vos, J.A.N., Spiertz, H.J.: A flexible sigmoid function of determinate growth. Ann. Bot. 91, 361–371 (2002)
Xiao, B., Nguyen, M., Yan, W.Q.: Apple ripeness identification using deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) ISGV 2021. CCIS, vol. 1386, pp. 53–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_5
Yan, W.Q.: Computational Methods for Deep Learning – Theoretic, Practice and Applications. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-61081-4
Yan, W.Q.: Introduction to Intelligent Surveillance - Surveillance Data Capture, Transmission, and Analytics, 3rd edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10713-0
Yu, F., Koltun, V.: Multiscale context aggregation by dilated convolutions. In: ICLR (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qi, J., Nguyen, M., Yan, W.Q. (2023). Small Visual Object Detection in Smart Waste Classification Using Transformers with Deep Learning. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-25825-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25824-4
Online ISBN: 978-3-031-25825-1
eBook Packages: Computer ScienceComputer Science (R0)