Skip to main content

Small Visual Object Detection in Smart Waste Classification Using Transformers with Deep Learning

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13836))

Included in the following conference series:

  • 1030 Accesses

Abstract

Smart object waste classification is relatively essential for protecting the environment and saving resources. This is considered a vital pathway towards sustainability. In waste classification, we see that it is challenging to detect waste of small visual objects with low resolutions that directly affect the overall performance of waste classification. While current visual object detection algorithms focus on the exploration of larger objects, the development of small object detection is being expanded relatively slowly due to the inability to acquire more visual information. In this paper, we propose a novel method combining contextual information and multiscale learning to improve small object detection performance in waste classification by enabling small object detection to obtain more feature information at high resolution. Furthermore, based on the advantages of parallel computing in Transformers, we utilize the DETR model to explore our method. The experimental results show that our method achieves high accuracy in the detection of a small object in waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: YOLOv4: optimal speed and accuracy of object detection. arXiv (2020)

    Google Scholar 

  2. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  4. Chen, S.S., et al.: Carbon emissions under different domestic waste treatment modes induced by garbage classification: case study in pilot communities in Shanghai, China. Sci. Total Environ. 717, 137193 (2020)

    Article  Google Scholar 

  5. Cui, L., et al.: Context-aware block net for small object detection. IEEE Trans. Cybern. 52(4), 2300–2313 (2022)

    Article  Google Scholar 

  6. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, pp. 886–893 (2005)

    Google Scholar 

  7. Dosovitskiy, A.,et al.: An image is worth 16 × 16 words: transformers for image recognition at scale. arXiv (2020)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE CVPR, pp. 580–587 (2014)

    Google Scholar 

  9. He, K.M., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  10. He, K.M., Zhang, X.Y., Ren, S.Q., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  11. Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv (2019)

    Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NIPS, pp. 1–9 (2012)

    Google Scholar 

  13. Li, J., et al.: Attentive contexts for object detection. IEEE Trans. Multimed. 19(5), 944–954 (2016). https://doi.org/10.1109/TMM.2016.2642789

    Article  Google Scholar 

  14. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  15. Liu, Z., Mao, H.Z., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie. S.N.: A ConvNet for the 2020s. arXiv (2022)

    Google Scholar 

  16. Li, Z., Zhou, F.: FSSD: feature fusion single shot multibox detector. arXiv:1712.00960 (2017)

  17. Luo, Z., Nguyen, M., Yan, W.: Sailboat detection based on automated search attention mechanism and deep learning models. In: IEEE IVCNZ (2021)

    Google Scholar 

  18. Nie, Z.F., Duan, W.J., Li, X.D.: Domestic garbage recognition and detection based on Faster R-CNN. In: Journal of Physics: Conference Series (2021)

    Google Scholar 

  19. Oliva, A., Torralba, A.: The role of context in object recognition. Trends Cogn. Sci. 11(12), 520–527 (2017)

    Article  Google Scholar 

  20. Pan, C., Yan, W.: A learning-based positive feedback in salient object detection. In: IEEE IVCNZ (2018)

    Google Scholar 

  21. Pan, C., Yan, W.Q.: Object detection based on saturation of visual perception. Multimed. Tools Appl. 79(27–28), 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x

    Article  Google Scholar 

  22. Pan, C., Liu, J., Yan, W., Zhou, Y.: Salient object detection based on visual perceptual saturation and two-stream hybrid networks. IEEE Trans. Image Process. 30, 4773–4787 (2021)

    Article  Google Scholar 

  23. Qi, J., Nguyen, M., Yan, W.: Waste classification from digital images using ConvNeXt. In: PSIVT (2022)

    Google Scholar 

  24. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR, pp. 779–788 (2016)

    Google Scholar 

  25. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE CVPR, pp. 7263–7271 (2017)

    Google Scholar 

  26. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE CVPR, pp. 658–666 (2019)

    Google Scholar 

  27. Shen, D., Xin, C., Nguyen, M., Yan, W.: Flame detection using deep learning. In: ICCAR (2018)

    Google Scholar 

  28. Vaswani, A.,et al.: Attention is all you need. In: NIPS (2019)

    Google Scholar 

  29. Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., Fergus, R.: Regularization of neural networks using DropConnect. In: ICML, pp. 1058–1066 (2013)

    Google Scholar 

  30. Yin, X., Goudriaan, J.A.N., Lantinga, E.A., Vos, J.A.N., Spiertz, H.J.: A flexible sigmoid function of determinate growth. Ann. Bot. 91, 361–371 (2002)

    Article  Google Scholar 

  31. Xiao, B., Nguyen, M., Yan, W.Q.: Apple ripeness identification using deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) ISGV 2021. CCIS, vol. 1386, pp. 53–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_5

    Chapter  Google Scholar 

  32. Yan, W.Q.: Computational Methods for Deep Learning – Theoretic, Practice and Applications. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-61081-4

    Book  MATH  Google Scholar 

  33. Yan, W.Q.: Introduction to Intelligent Surveillance - Surveillance Data Capture, Transmission, and Analytics, 3rd edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-10713-0

    Book  Google Scholar 

  34. Yu, F., Koltun, V.: Multiscale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianchun Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qi, J., Nguyen, M., Yan, W.Q. (2023). Small Visual Object Detection in Smart Waste Classification Using Transformers with Deep Learning. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics