Skip to main content

A Hybrid Human-Machine System for Image-Based Multi-weather Detection

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Abstract

Accurate determination of weather from images or video is of prime significance in applications such as autonomous vehicles drive or atmospheric pollution estimation. In contrast to image classification approaches generally adopted in the literature based on neural networks acting directly on the input, we propose a novel joint learning approach combining features extracted from the input image, sensitive to the human visual system (HVS) and those generated by the CNN model trained on benchmark datasets. The features work in a joint collaboration that is able to detect the presence of weather features during learning. The novel approach outperforms many state-of-the-art methods which use only CNN-based extracted features in order to classify the images. Experimental results with publicly available benchmark datasets establish the robustness and effectiveness of the proposed method in multi-weather classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, J., Chen, Y., Shin, H.: Weather classification using convolutional neural networks. In: 2018 International SoC Design Conference (ISOCC), pp. 245–246 (2018). https://doi.org/10.1109/ISOCC.2018.8649921

  2. Ancuti, C., Ancuti, C.O., De Vleeschouwer, C.: D-hazy: a dataset to evaluate quantitatively dehazing algorithms. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2226–2230 (2016). https://doi.org/10.1109/ICIP.2016.7532754

  3. Bhandari, H., Palit, S., Chowdhury, S., Dey, P.: Can a camera tell the weather? In: 2021 36th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6 (2021). https://doi.org/10.1109/IVCNZ54163.2021.9653246

  4. Chen, Z., Yang, F., Lindner, A., Barrenetxea, G., Vetterli, M.: Howis the weather: automatic inference from images. In: 2012 19th IEEE International Conference on Image Processing, pp. 1853–1856 (2012). https://doi.org/10.1109/ICIP.2012.6467244

  5. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002). https://doi.org/10.1109/34.1000236

    Article  Google Scholar 

  6. Derpanis, K.G., Lecce, M., Daniilidis, K., Wildes, R.P.: Dynamic scene understanding: the role of orientation features in space and time in scene classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1306–1313 (2012). https://doi.org/10.1109/CVPR.2012.6247815

  7. Elhoseiny, M., Huang, S., Elgammal, A.: Weather classification with deep convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 3349–3353 (2015). https://doi.org/10.1109/ICIP.2015.7351424

  8. Groen, I.I.A., Ghebreab, S., Prins, H., Lamme, V.A.F., Scholte, H.S.: From image statistics to scene gist: evoked neural activity reveals transition from low-level natural image structure to scene category. J. Neurosci. 33, 18814–18824 (2013)

    Article  Google Scholar 

  9. Kurihata, H., et al.: Rainy weather recognition from in-vehicle camera images for driver assistance. In: IEEE Proceedings Intelligent Vehicles Symposium 2005, pp. 205–210 (2005). https://doi.org/10.1109/IVS.2005.1505103

  10. Laffont, P.Y., Ren, Z., Tao, X., Qian, C., Hays, J.: Transient attributes for high-level understanding and editing of outdoor scenes. ACM Trans. Graph. 33, 149:1–149:11 (2014). https://doi.org/10.1145/2601097.2601101

  11. Li, Z., Li, Y., Zhong, J., Chen, Y.: Multi-class weather classification based on multi-feature weighted fusion method. IOP Conf. Ser. Earth Environ. Sci. 558(4), 042038 (2020). https://doi.org/10.1088/1755-1315/558/4/042038

  12. Lin, D., Lu, C., Liao, R., Jia, J.: Learning important spatial pooling regions for scene classification. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3726–3733 (2014). https://doi.org/10.1109/CVPR.2014.476

  13. Liu, Y.F., Jaw, D., Yeh, W.C., Hwang, J.N.: DesnowNet: context-aware deep network for snow removal. IEEE Trans. Image Process. 27(6), 3064–3073 (2018). https://doi.org/10.1109/TIP.2018.2806202

    Article  MathSciNet  Google Scholar 

  14. Lu, C., Lin, D., Jia, J., Tang, C.K.: Two-class weather classification. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2510–2524 (2017). https://doi.org/10.1109/TPAMI.2016.2640295

    Article  Google Scholar 

  15. Narasimhan, S., Nayar, S.: Shedding light on the weather. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2003 Proceedings, vol. 1, p. I (2003). https://doi.org/10.1109/CVPR.2003.1211417

  16. Roser, M., Moosmann, F.: Classification of weather situations on single color images. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 798–803 (2008). https://doi.org/10.1109/IVS.2008.4621205

  17. Shen, L., Tan, P.: Photometric stereo and weather estimation using internet images. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1850–1857 (2009). https://doi.org/10.1109/CVPR.2009.5206732

  18. Song, H., Chen, Y., Gao, Y.: Weather condition recognition based on feature extraction and K-NN. In: Sun, F., Hu, D., Liu, H. (eds.) Foundations and Practical Applications of Cognitive Systems and Information Processing. AISC, vol. 215, pp. 199–210. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-37835-5_18

    Chapter  Google Scholar 

  19. Yan, X., Luo, Y., Zheng, X.: Weather recognition based on images captured by vision system in vehicle. In: Yu, W., He, H., Zhang, N. (eds.) ISNN 2009. LNCS, vol. 5553, pp. 390–398. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01513-7_42

    Chapter  Google Scholar 

  20. Zhang, Z., Ma, H.: Multi-class weather classification on single images. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4396–4400 (2015). https://doi.org/10.1109/ICIP.2015.7351637

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarbani Palit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhandari, H., Chowdhury, S., Palit, S. (2023). A Hybrid Human-Machine System for Image-Based Multi-weather Detection. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics