Skip to main content

Medical VQA: MixUp Helps Keeping it Simple

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Abstract

Recently, Medical Visual Question Answering (VQA) became an active area of research with the induction of several publicly available benchmark datasets and the organization of challenges. Like many competitions, the quest for success has driven the use of increasingly complex neural networks. Winning strategies generally leverage multi-scale architectures and model ensembling to achieve state-of-the-art performance. However, several studies have established the capability of simpler architectures in learning more meaningful features and avoiding over-parameterization. Specifically, the use of MixUp based image augmentation with a simple VGG16 network helped achieve significant improvement in performance for medical VQA. Inspired by this finding, we propose a modified version, VQAMixUp, that leverages both images and questions for augmenting VQA datasets. VQAMixUp combined with a few enhanced training strategies help simple models (with \(\approx 65\)% reduced parameters) achieve state-of-the-performance on benchmark ImageCLEF-VQA-MED validation datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abacha, A.B., Datla, V.V., Hasan, S.A., Demner-Fushman, D., Muller, H.: Overview of the VQA-med task at ImageCLEF 2020: visual question answering and generation in the medical domain. In: CEUR Workshop Proceedings (2020)

    Google Scholar 

  2. Abacha, A.B., Sarrouti, M., Demner-Fushman, D., Hasan, S.A., Müller, H.: Overview of the VQA-med task at ImageCLEF 2021: visual question answering and generation in the medical domain. In: CEUR Workshop Proceedings (2021)

    Google Scholar 

  3. Al-Sadi, A., Al-Theiabat, H.A., Al-Ayyoub, M.: The inception team at VQA-med 2020: pretrained VGG with data augmentation for medical VQA and VQG. In: CEUR Workshop Proceedings, vol. 2696 (2020)

    Google Scholar 

  4. Castells, T., Weinzaepfel, P., Revaud, J.: Superloss: a generic loss for robust curriculum learning, vol. 33, pp. 4308–4319. Curran Associates, Inc. (2020)

    Google Scholar 

  5. Chen, G., Gong, H., Li, G.: HCP-mic at VQA-med 2020: effective visual representation for medical visual question answering, vol. 2696. CEUR (2020)

    Google Scholar 

  6. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR, abs/1412.3555 (2014)

    Google Scholar 

  7. Eslami, S., de Melo, G., Meinel, C.: Teams at VQA-med 2021: BBN-orchestra for long-tailed medical visual question answering. In: CEUR, vol. 2936, pp. 1211–1217 (2021)

    Google Scholar 

  8. Gong, H., Huang, R., Chen, G., Li, G.: SYSU-HCP at VQA-med 2021: a data-centric model with efficient training methodology for medical visual question answering. In: CLEF (2021)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, abs/1512.03385 (2015)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Huang, G., Liu, Z., Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. CoRR, abs/1608.06993 (2016)

    Google Scholar 

  12. Jung, B., Gu, L., Harada, T.: bumjun jung at VQA-med 2020: VQA model based on feature extraction and multi-modal feature fusion. In: CEUR Workshop Proceedings, vol. 2696 (2020)

    Google Scholar 

  13. Lee, J., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. CoRR, abs/1901.08746 (2019)

    Google Scholar 

  14. Liao, Z., Wu, Q., Shen, C., Hengel, A.V., Verjans, J.W.: AIML at VQA-med 2020: knowledge inference via a skeleton-based sentence mapping approach for medical domain visual question answering, vol. 2696, pp. 1–14. CEUR (2020)

    Google Scholar 

  15. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. CoRR, abs/1801.04381 (2018)

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR, arXiv:1409.1556 (2014)

  17. Virk, J.S., Bathula, D.R.: Domain-specific, semi-supervised transfer learning for medical imaging. In: CODS COMAD, pp. 145–153 (2021)

    Google Scholar 

  18. Xiao, Q., Zhou, X., Xiao, Y., Zhao, K.: Yunnan university at VQA-med 2021: pretrained BioBERT for medical domain visual question answering. In: CEUR Workshop Proceedings, vol. 2936, pp. 1405–1411 (2021)

    Google Scholar 

  19. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. CoRR, abs/1611.05431 (2016)

    Google Scholar 

  20. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.J.: Stacked attention networks for image question answering. CoRR, abs/1511.02274 (2015)

    Google Scholar 

  21. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. CoRR, abs/1710.09412 (2018)

    Google Scholar 

  22. Zhang, H., et al.: Resnest: split-attention networks. CoRR, abs/2004.08955 (2020)

    Google Scholar 

  23. Zhou, B., Cui, Q., Wei, X.S., Chen, Z.: BBN: bilateral-branch network with cumulative learning for long-tailed visual recognition. CoRR, arXiv:1912.02413 (2019)

  24. Zhou, Y., Yu, J., Xiang, C., Fan, J., Tao, D.: Beyond bilinear: generalized multimodal factorized high-order pooling for visual question answering. IEEE Trans. Neural Netw. Learn. Syst. 29, 5947–5959 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dwarikanath Mahapatra or Deepti R. Bathula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, J., Mahapatra, D., Bathula, D.R. (2023). Medical VQA: MixUp Helps Keeping it Simple. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics