Skip to main content

A Real-Time Kiwifruit Detection Based on Improved YOLOv7

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13836))

Included in the following conference series:

  • 1626 Accesses

Abstract

In New Zealand (NZ), agriculture is an essential industry, Kiwifruits contribute significantly to the country’s overall exports. Traditionally Kiwifruits require manually picking up and heavily relies on human resources, which result in Kiwifruit yields often being affected by human labours. With the rapid development of deep learning in agriculture, agricultural automation has become an efftive way for the industry. Accurate and fast Kiwifruit detection can accelerate the process in the industry. In this paper, we propose an improved Kiwifruit detection model based on YOLOv7. We collected digital images from natural Kiwifruit orchards and produced a manually labelled, data-augumented Kiwifruit image dataset. We add the attention module to YOLOv7 and increase the weight of visual features while suppressing the weight of invalid features. The results show that our proposed method has higher detection accuracy than the original YOLOv7 model, while the detection speed is sufficient for real-time usage. The results of our experiments provide a technical reference for automated picking in modern Kiwifruit supply chain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, N., Yan, W.: Multitarget tracking using Siamese neural networks. ACM Trans. Multimed. Comput. Commun. App. 17, 1–6 (2021)

    Article  Google Scholar 

  2. Bazame, H., Molin, J., Althoff, D., Martello, M.: Detection, classification, and mapping of coffee fruits during harvest with computer vision. Comput. Electron. Agric. 183, 106066 (2021)

    Article  Google Scholar 

  3. Bochkovskiy, A., Wang, C., Liao, H.: YOLOv4: Optimal speed and accuracy of object detection, https://arxiv.org/abs/2004.10934

  4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  5. Ferguson, A.: 1904—the year that Kiwifruit (Actinidia deliciosa) came to New Zealand. N. Z. J. Crop. Hortic. Sci. 32, 3–27 (2004)

    Article  Google Scholar 

  6. Fu, Y., Nguyen, M., Yan, W.Q.: Grading methods for fruit freshness based on deep learning. SN Comput. Sci. 3, 264 (2022)

    Article  Google Scholar 

  7. Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: Exceeding YOLO series in 2021 (2021). https://arxiv.org/abs/2107.08430

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Gongal, A., Karkee, M., Amatya, S.: Apple fruit size estimation using a 3D machine vision system. Inf. Process. Agric. 5, 498–503 (2018)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  12. Jilbert, M. N., Jennifer, C.D.: On-tree mature coconut fruit detection based on deep learning using UAV images. In: IEEE International Conference on Cybernetics and Computational Intelligence, pp. 494–499 (2022)

    Google Scholar 

  13. Lawal, O.: YOLOMuskmelon: quest for fruit detection speed and accuracy using deep learning. IEEE Access 9, 15221–15227 (2021)

    Article  Google Scholar 

  14. Liu, G., Hou, Z., Liu, H., Liu, J., Zhao, W., Li, K.: TomatoDet: anchor-free detector for tomato detection. Front. Plant Sci. 13, 942875 (2022)

    Article  Google Scholar 

  15. Liu, Y., Yang, G., Huang, Y., Yin, Y.: SE-Mask R-CNN: an improved Mask R-CNN for apple detection and segmentation. J. Intell. Fuzzy Syst. 41, 6715–6725 (2021)

    Article  Google Scholar 

  16. Liu, Z., Yan, W., Yang, B.: Image denoising based on a CNN model. In: IEEE ICCAR (2018)

    Google Scholar 

  17. Long, X., et al.: PP-YOLO: An effective and efficient implementation of object detector. https://arxiv.org/abs/2007.12099

  18. Massah, J., AsefpourVakilian, K., Shabanian, M., Shariatmadari, S.: Design, development, and performance evaluation of a robot for yield estimation of Kiwifruit. Comput. Electron. Agric. 185, 106132 (2021)

    Article  Google Scholar 

  19. Olaniyi, E., Oyedotun, O., Adnan, K.: Intelligent grading system for banana fruit using neural network arbitration. J. Food Process Eng. 40, e12335 (2016)

    Article  Google Scholar 

  20. Pan, C., Liu, J., Yan, W., et al.: Salient object detection based on visual perceptual saturation and two-stream hybrid networks. IEEE Trans. Image Process. 30, 4773–4787 (2021)

    Article  Google Scholar 

  21. Pan, C., Yan, W.: A learning-based positive feedback in salient object detection. In: IEEE IVCNZ (2018)

    Google Scholar 

  22. Pan, C., Yan, W.Q.: Object detection based on saturation of visual perception. Multimed. Tools App. 79(27–28), 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x

    Article  Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR, pp. 779–788 (2016)

    Google Scholar 

  24. Shan, T., Yan, J.: SCA-Net: a spatial and channel attention network for medical image segmentation. IEEE Access. 9, 160926–160937 (2021)

    Article  Google Scholar 

  25. Shen, D., Xin, C., Nguyen, M., Yan, W.: Flame detection using deep learning. In: IEEE ICCAR (2018)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Wang, C., Bochkovskiy, A., Liao, H.: Scaled-YOLOv4: Scaling cross stage partial network. https://arxiv.org/abs/2011.08036

  28. Wang, C., Bochkovskiy, A., Liao, H.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. https://arxiv.org/abs/2207.02696

  29. Wang, C., Yeh, I., Liao, H.: You Only Learn One Representation: Unified network for multiple tasks. https://arxiv.org/abs/2105.04206

  30. Wang, L., Yan, W.Q.: Tree leaves detection based on deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 26–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_3

    Chapter  Google Scholar 

  31. Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks. https://arxiv.org/abs/1910.03151

  32. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  33. Xiao, B., Nguyen, M., Yan, W.Q.: Apple ripeness identification using deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 53–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_5

    Chapter  Google Scholar 

  34. Yan, W.:Computational Methods for Deep Learning: Theoretic, Practice and Applications Texts in Computer Science. TCS. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-61081-4

  35. Yan, W.: Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, and Analytics. 2nd Edn. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-60228-8

  36. Zhao, K., Yan, W.Q.: Fruit detection from digital images using CenterNet. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 313–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_24

    Chapter  Google Scholar 

  37. Zheng, K., Yan, W., Nand, P.: Video dynamics detection using deep neural networks. IEEE Trans. Emerg. Top. Comput. Intell. 25, 223–234 (2017)

    Google Scholar 

  38. Zhu, X., Cheng, D., Zhang, Z., Lin, S., Dai, J.: An empirical study of spatial attention mechanisms in deep networks. IEEE CVPR, pp. 6688–6697 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, Y., Nguyen, M., Yan, W.Q. (2023). A Real-Time Kiwifruit Detection Based on Improved YOLOv7. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics