Abstract
In New Zealand (NZ), agriculture is an essential industry, Kiwifruits contribute significantly to the country’s overall exports. Traditionally Kiwifruits require manually picking up and heavily relies on human resources, which result in Kiwifruit yields often being affected by human labours. With the rapid development of deep learning in agriculture, agricultural automation has become an efftive way for the industry. Accurate and fast Kiwifruit detection can accelerate the process in the industry. In this paper, we propose an improved Kiwifruit detection model based on YOLOv7. We collected digital images from natural Kiwifruit orchards and produced a manually labelled, data-augumented Kiwifruit image dataset. We add the attention module to YOLOv7 and increase the weight of visual features while suppressing the weight of invalid features. The results show that our proposed method has higher detection accuracy than the original YOLOv7 model, while the detection speed is sufficient for real-time usage. The results of our experiments provide a technical reference for automated picking in modern Kiwifruit supply chain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
An, N., Yan, W.: Multitarget tracking using Siamese neural networks. ACM Trans. Multimed. Comput. Commun. App. 17, 1–6 (2021)
Bazame, H., Molin, J., Althoff, D., Martello, M.: Detection, classification, and mapping of coffee fruits during harvest with computer vision. Comput. Electron. Agric. 183, 106066 (2021)
Bochkovskiy, A., Wang, C., Liao, H.: YOLOv4: Optimal speed and accuracy of object detection, https://arxiv.org/abs/2004.10934
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Ferguson, A.: 1904—the year that Kiwifruit (Actinidia deliciosa) came to New Zealand. N. Z. J. Crop. Hortic. Sci. 32, 3–27 (2004)
Fu, Y., Nguyen, M., Yan, W.Q.: Grading methods for fruit freshness based on deep learning. SN Comput. Sci. 3, 264 (2022)
Ge, Z., Liu, S., Wang, F., Li, Z., Sun, J.: YOLOX: Exceeding YOLO series in 2021 (2021). https://arxiv.org/abs/2107.08430
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Gongal, A., Karkee, M., Amatya, S.: Apple fruit size estimation using a 3D machine vision system. Inf. Process. Agric. 5, 498–503 (2018)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Jilbert, M. N., Jennifer, C.D.: On-tree mature coconut fruit detection based on deep learning using UAV images. In: IEEE International Conference on Cybernetics and Computational Intelligence, pp. 494–499 (2022)
Lawal, O.: YOLOMuskmelon: quest for fruit detection speed and accuracy using deep learning. IEEE Access 9, 15221–15227 (2021)
Liu, G., Hou, Z., Liu, H., Liu, J., Zhao, W., Li, K.: TomatoDet: anchor-free detector for tomato detection. Front. Plant Sci. 13, 942875 (2022)
Liu, Y., Yang, G., Huang, Y., Yin, Y.: SE-Mask R-CNN: an improved Mask R-CNN for apple detection and segmentation. J. Intell. Fuzzy Syst. 41, 6715–6725 (2021)
Liu, Z., Yan, W., Yang, B.: Image denoising based on a CNN model. In: IEEE ICCAR (2018)
Long, X., et al.: PP-YOLO: An effective and efficient implementation of object detector. https://arxiv.org/abs/2007.12099
Massah, J., AsefpourVakilian, K., Shabanian, M., Shariatmadari, S.: Design, development, and performance evaluation of a robot for yield estimation of Kiwifruit. Comput. Electron. Agric. 185, 106132 (2021)
Olaniyi, E., Oyedotun, O., Adnan, K.: Intelligent grading system for banana fruit using neural network arbitration. J. Food Process Eng. 40, e12335 (2016)
Pan, C., Liu, J., Yan, W., et al.: Salient object detection based on visual perceptual saturation and two-stream hybrid networks. IEEE Trans. Image Process. 30, 4773–4787 (2021)
Pan, C., Yan, W.: A learning-based positive feedback in salient object detection. In: IEEE IVCNZ (2018)
Pan, C., Yan, W.Q.: Object detection based on saturation of visual perception. Multimed. Tools App. 79(27–28), 19925–19944 (2020). https://doi.org/10.1007/s11042-020-08866-x
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE CVPR, pp. 779–788 (2016)
Shan, T., Yan, J.: SCA-Net: a spatial and channel attention network for medical image segmentation. IEEE Access. 9, 160926–160937 (2021)
Shen, D., Xin, C., Nguyen, M., Yan, W.: Flame detection using deep learning. In: IEEE ICCAR (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, C., Bochkovskiy, A., Liao, H.: Scaled-YOLOv4: Scaling cross stage partial network. https://arxiv.org/abs/2011.08036
Wang, C., Bochkovskiy, A., Liao, H.: YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. https://arxiv.org/abs/2207.02696
Wang, C., Yeh, I., Liao, H.: You Only Learn One Representation: Unified network for multiple tasks. https://arxiv.org/abs/2105.04206
Wang, L., Yan, W.Q.: Tree leaves detection based on deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 26–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_3
Wang, Q., Wu, B., Zhu, P., Li, P., Zuo, W., Hu, Q.: ECA-Net: Efficient channel attention for deep convolutional neural networks. https://arxiv.org/abs/1910.03151
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Xiao, B., Nguyen, M., Yan, W.Q.: Apple ripeness identification using deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 53–67. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_5
Yan, W.:Computational Methods for Deep Learning: Theoretic, Practice and Applications Texts in Computer Science. TCS. Springer, Cham (2021).https://doi.org/10.1007/978-3-030-61081-4
Yan, W.: Introduction to Intelligent Surveillance: Surveillance Data Capture, Transmission, and Analytics. 2nd Edn. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-60228-8
Zhao, K., Yan, W.Q.: Fruit detection from digital images using CenterNet. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) Geometry and Vision. CCIS, vol. 1386, pp. 313–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_24
Zheng, K., Yan, W., Nand, P.: Video dynamics detection using deep neural networks. IEEE Trans. Emerg. Top. Comput. Intell. 25, 223–234 (2017)
Zhu, X., Cheng, D., Zhang, Z., Lin, S., Dai, J.: An empirical study of spatial attention mechanisms in deep networks. IEEE CVPR, pp. 6688–6697 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xia, Y., Nguyen, M., Yan, W.Q. (2023). A Real-Time Kiwifruit Detection Based on Improved YOLOv7. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-25825-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25824-4
Online ISBN: 978-3-031-25825-1
eBook Packages: Computer ScienceComputer Science (R0)