Skip to main content

Correcting Charge Sharing Distortions in Photon Counting Detectors Utilising a Spatial-Temporal CNN

  • Conference paper
  • First Online:
Image and Vision Computing (IVCNZ 2022)

Abstract

Charge sharing induces spectral and spatial distortions on photon counting detectors which must be corrected using methods such as charge summing circuitry. We propose a method of correction using a spatial-temporal convolutional neural network based on the CycN-Net design. Our results were compared to an analytical scalar matrix correction and a U-Net. We show improvements in two energy channels set to 50 and 60 kev with a mean absolute percentage error reduced from 4.84% and 7.46% to 3.95% and 5.14% respectively when compared to the scalar matrix approach. We believe this shows the potential viability of utilising the spatial-temporal CNN approach for correcting charge sharing distortions in higher energy ranges, where photon counts tend to be lower for photon counting detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atharifard, A., et al.: Per-pixel energy calibration of photon counting detectors. J. Instrum. 12(03), C03085 (2017)

    Article  Google Scholar 

  2. Bai, T., et al.: Deep interactive denoiser (did) for x-ray computed tomography. IEEE Trans. Med. Imaging 40(11), 2965–2975 (2021)

    Article  Google Scholar 

  3. Ballabriga, R., et al.: The medipix3rx: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. J. Instrum. 8(02), C02016 (2013)

    Article  Google Scholar 

  4. Dreier, E.S., et al.: Spectral correction algorithm for multispectral CDTE x-ray detectors. Opt. Eng. 57(5), 054117 (2018)

    Google Scholar 

  5. Flohr, T., et al.: Photon-counting CT review. Physica Med. 79, 126–136 (2020)

    Article  Google Scholar 

  6. Gimenez, E., et al.: Study of charge-sharing in medipix3 using a micro-focused synchrotron beam. J. Instrum. 6(01), C01031 (2011)

    Article  Google Scholar 

  7. Hamel, L., et al.: Optimization of single-sided charge-sharing strip detectors. In: 2006 IEEE Nuclear Science Symposium Conference Record. vol. 6, pp. 3759–3761 (2006). https://doi.org/10.1109/NSSMIC.2006.353811

  8. Holbrook, M., Clark, D., Badea, C.: Deep learning based spectral distortion correction and decomposition for photon counting CT using calibration provided by an energy integrated detector. In: Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, p. 1159520. International Society for Optics and Photonics (2021)

    Google Scholar 

  9. Leng, S., et al.: Dose-efficient ultrahigh-resolution scan mode using a photon counting detector computed tomography system. J. Med. Imaging 3(4), 043504 (2016)

    Article  Google Scholar 

  10. Li, M., Rundle, D.S., Wang, G.: X-ray photon-counting data correction through deep learning. arXiv preprint arXiv:2007.03119 (2020)

  11. McGregor, D., Hermon, H.: Room-temperature compound semiconductor radiation detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Acceler. Spectro. Detect. Assoc. Equip. 395(1), 101–124 (1997). https://doi.org/10.1016/S0168-9002(97)00620-7, www.sciencedirect.com/science/article/pii/S0168900297006207

  12. Pellegrini, G., et al.: Direct charge sharing observation in single-photon-counting pixel detector. Nucl. Instrum. Methods Phys. Res. Sect. A 573(1–2), 137–140 (2007)

    Article  Google Scholar 

  13. Symons, R., et al.: Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: an in vivo study. Med. Phys. 44(10), 5120–5127 (2017)

    Article  Google Scholar 

  14. Taguchi, K.: Multi-energy inter-pixel coincidence counters for charge sharing correction and compensation in photon counting detectors. Med. Phys. 47(5), 2085–2098 (2020)

    Article  Google Scholar 

  15. Tao, X., Wang, Y., Lin, L., Hong, Z., Ma, J.: Learning to reconstruct CT images from the VVBP-tensor. IEEE Trans. Med. Imaging 40, 3030–3041 (2021)

    Article  Google Scholar 

  16. Wang, G., Jacob, M., Mou, X., Shi, Y., Eldar, Y.C.: Deep tomographic image reconstruction: yesterday, today, and tomorrow-editorial for the 2nd special issue machine learning for image reconstruction. IEEE Trans. Med. Imaging 40(11), 2956–2964 (2021)

    Article  Google Scholar 

  17. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  18. Zhi, S., Kachelrieß, M., Pan, F., Mou, X.: CYCN-net: a convolutional neural network specialized for 4D CBCT images refinement. IEEE Trans. Med. Imaging 40(11), 3054–3064 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This project was funded by the Ministry of Business, Innovation and Employment (MBIE), New Zealand under contract number UOCX1404, by MARS Bioimaging Ltd and the Ministry of Education through the MedTech CoRE. The authors would like to acknowledge the Medipix2, Medipix3 and Medipix4 collaborations. Also, we would like to take this opportunity to acknowledge the generous support of the MARS Collaboration. European MARS Collaboration: S. A.  Adebileje, S. D. Alexander, M. R.  Amma, M. Anjomrouz, F. Asghariomabad, S. T. Bell, R. Senzing, F. O. Bochud, A. P. H. Butler, P. H. Butler, P. Carbonez, C. Chambers, K. M. Chapagain, A. I. Chernoglazov, J. A. Clark, J. S. Crighton, S. Dahal, T. Dapamede, A. Denys, N. J. A. deRuiter, D. Dixit, R. M. N. Doesburg, K. Dombroski, N. Duncan, S. P. Gieseg, A. Gopinathan, B. P. Goulter, J. L. Healy, L. Holmes, K. Jonker, T. Kirkbride, C. Lowe, V. B. H. Mandalika, A. Matanaghi, M. Moghiseh, M. Nowak, B. Paulmier, D. Racine, P. Renaud, D. Rundle, N. Schleich, E. Searle, J. S. Sheeja, L. Vanden Broeke, F. R. Verdun, V. Vitzthum, Vivek V. S., E. P. Walker, M. Wijesooriya, W.  R. Younger.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smith, A., Atlas, J., Atharifard, A. (2023). Correcting Charge Sharing Distortions in Photon Counting Detectors Utilising a Spatial-Temporal CNN. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25825-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25824-4

  • Online ISBN: 978-3-031-25825-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics