Abstract
Pixel space augmentation has grown in popularity in many Deep Learning areas, due to its effectiveness, simplicity, and low computational cost. Data augmentation for videos, however, still remains an under-explored research topic, as most works have been treating inputs as stacks of static images rather than temporally linked series of data. Recently, it has been shown that involving the time dimension when designing augmentations can be superior to its spatial-only variants for video action recognition [34]. In this paper, we propose several novel enhancements to these techniques to strengthen the relationship between the spatial and temporal domains and achieve a deeper level of perturbations. The video action recognition results of our techniques outperform their respective variants in Top-1 and Top-5 settings on the UCF-101 [55] and the HMDB-51 [38] datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antoniou, A., Storkey, A., Edwards, H.: Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340 (2017)
Brock, A., Donahue, J., Simonyan, K.: Large scale gan training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
Chu, P., Bian, X., Liu, S., Ling, H.: Feature space augmentation for long-tailed data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12374, pp. 694–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58526-6_41
Cireşan, D., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: High-performance neural networks for visual object classification. Computing Research Repository - CORR (2011)
Cireşan, D., Meier, U., Schmidhuber, J.: Multi-column deep neural networks for image classification. In: Proceedings/CVPR, IEEE Computer Society Conference on Computer Vision and Pattern Recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012). https://doi.org/10.1109/CVPR.2012.6248110
Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: learning augmentation policies from data. arXiv preprint arXiv:1805.09501 (2018)
Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)
DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv preprint arXiv:1702.05538 (2017)
DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)
Doersch, C.: Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908 (2016)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6202–6211 (2019)
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)
French, G., Mackiewicz, M., Fisher, M.: Self-ensembling for visual domain adaptation. In: International Conference on Learning Representations (2018)
French, G., Oliver, A., Salimans, T.: Milking cowmask for semi-supervised image classification. arXiv preprint arXiv:2003.12022 (2020)
Frid-Adar, M., Diamant, I., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Gan-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 321, 321–331 (2018)
Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014)
Gorpincenko, A., French, G., Knight, P., Challiss, M., Mackiewicz, M.: Improving automated sonar video analysis to notify about jellyfish blooms. IEEE Sens. J. 21(4), 4981–4988 (2021). https://doi.org/10.1109/JSEN.2020.3032031
Gorpincenko, A., French, G., Mackiewicz, M.: Virtual adversarial training in feature space to improve unsupervised video domain adaptation (2020)
Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv preprint arXiv:1706.02677 (2017)
Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5842–5850 (2017)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation: efficient learning of augmentation policy schedules. In: International Conference on Machine Learning, pp. 2731–2741. PMLR (2019)
Inoue, H.: Data augmentation by pairing samples for images classification. arXiv preprint arXiv:1801.02929 (2018)
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2013). https://doi.org/10.1109/TPAMI.2012.59
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1725–1732 (2014). https://doi.org/10.1109/CVPR.2014.223
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kim, J.Y., Ha, J.E.: Spatio-temporal data augmentation for visual surveillance. IEEE Access (2021). https://doi.org/10.1109/ACCESS.2021.3135505
Kim, J., Cha, S., Wee, D., Bae, S., Kim, J.: Regularization on spatio-temporally smoothed feature for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12103–12112 (2020)
Kim, T., Lee, H., Cho, M.A., Lee, H.S., Cho, D.H., Lee, S.: Learning temporally invariant and localizable features via data augmentation for video recognition. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12536, pp. 386–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66096-3_27
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012)
Krogh, A., Hertz, J.: A simple weight decay can improve generalization. In: Advances in Neural Information Processing Systems, vol. 4 (1991)
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563 (2011). https://doi.org/10.1109/ICCV.2011.6126543
Lee, S., Park, B., Kim, A.: Deep learning based object detection via style-transferred underwater sonar images. IFAC-PapersOnLine 52(21), 152–155 (2019). https://doi.org/10.1016/j.ifacol.2019.12.299
Lemley, J., Bazrafkan, S., Corcoran, P.M.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)
Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Liu, B., Wang, X., Dixit, M., Kwitt, R., Vasconcelos, N.: Feature space transfer for data augmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)
Mao, X., Ma, Y., Yang, Z., Chen, Y., Li, Q.: Virtual mixup training for unsupervised domain adaptation (2019)
Misra, I., Maaten, L.V.D.: Self-supervised learning of pretext-invariant representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6707–6717 (2020)
Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1979–1993 (2019). https://doi.org/10.1109/TPAMI.2018.2858821
Moosavi-Dezfooli, S.M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)
Moreno-Barea, F.J., Strazzera, F., Jerez, J.M., Urda, D., Franco, L.: Forward noise adjustment scheme for data augmentation. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 728–734 (2018). https://doi.org/10.1109/SSCI.2018.8628917
Prechelt, L.: Early stopping - but when? In: Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49430-8_3
Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised domain adaptation. arXiv preprint arXiv:1802.08735 (2018)
Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural networks applied to visual document analysis. In: Seventh International Conference on Document Analysis and Recognition, 2003, pp. 958–963 (2003). https://doi.org/10.1109/ICDAR.2003.1227801
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 1, NIPS 2014, pp. 568–576. MIT Press, Cambridge (2014)
Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. Adv. Neural. Inf. Process. Syst. 33, 596–608 (2020)
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)
Summers, C., Dinneen, M.J.: Improved mixed-example data augmentation. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1262–1270. IEEE (2019)
Sun, L., Jia, K., Yeung, D., Shi, B.E.: Human action recognition using factorized spatio-temporal convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4597–4605. IEEE Computer Society, Los Alamitos (2015). https://doi.org/10.1109/ICCV.2015.522
Terayama, K., Shin, K., Mizuno, K., Tsuda, K.: Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquacult. Eng. 86, 102000 (2019). https://doi.org/10.1016/j.aquaeng.2019.102000
Tran, T., Pham, T., Carneiro, G., Palmer, L., Reid, I.: A Bayesian data augmentation approach for learning deep models. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 2794–2803. Curran Associates Inc., Red Hook (2017)
Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)
Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1510–1517 (2017)
Wang, Y.X., Girshick, R., Hebert, M., Hariharan, B.: Low-shot learning from imaginary data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7278–7286 (2018)
Yoo, J., Ahn, N., Sohn, K.A.: Rethinking data augmentation for image super-resolution: a comprehensive analysis and a new strategy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8375–8384 (2020)
Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., Choe, J.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6022–6031 (2019). https://doi.org/10.1109/ICCV.2019.00612
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgement
The authors are grateful for the support from the Natural Environment Research Council and Engineering and Physical Sciences Research Council through the NEXUSS Centre for Doctoral Training (grant #NE/RO12156/1).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gorpincenko, A., Mackiewicz, M. (2023). Extending Temporal Data Augmentation for Video Action Recognition. In: Yan, W.Q., Nguyen, M., Stommel, M. (eds) Image and Vision Computing. IVCNZ 2022. Lecture Notes in Computer Science, vol 13836. Springer, Cham. https://doi.org/10.1007/978-3-031-25825-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-25825-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-25824-4
Online ISBN: 978-3-031-25825-1
eBook Packages: Computer ScienceComputer Science (R0)