Skip to main content

A Game Theoretic Flavoured Decision Tree for Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

A game theoretic flavoured decision tree is designed for multi-class classification. Node data is split by using a game between sub-nodes that try to minimize their entropy. The splitting parameter is approximated by a naive approach that explores the deviations of players that can improve payoffs by unilateral deviations in order to imitate the behavior of the Nash equilibrium of the game. The potential of the approach is illustrated by comparing its performance with other decision tree-based approaches on a set of synthetic data.

This work was supported by a grant of the Romanian Ministry of Education and Research, CNCS - UEFISCDI, project number PN-III-P4-ID-PCE-2020-2360, within PNCDI III.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    UCI Machine Learning Repository https://archive.ics.uci.edu/ml/index.php, accessed March 2022.

References

  1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth and Brooks, Monterey (1984)

    MATH  Google Scholar 

  2. Chen, Y., He, X., Xu, J., Guo, L., Lu, Y., Zhang, R.: Decision tree-based classification in coastal area integrating polarimetric SAR and optical data. Data Technol. Appl. 56, 342–357 (2022). https://doi.org/10.1108/DTA-08-2019-0149

    Article  Google Scholar 

  3. Chioson, F.B., Munsayac, F.E.T.J., III., Luta, R.B.G., Baldovino, R.G., Bugtai, N.T.: Classification and determination of pH value: a decision tree learning approach. In: 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines. IEEE (2018)

    Google Scholar 

  4. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861–874 (2006). https://doi.org/10.1016/j.patrec.2005.10.010. ROC Analysis in Pattern Recognition

  5. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edn. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  6. Krupka, J., Kasparova, M., Jirava, P.: Quality of life modelling based on decision trees. E & M Ekonomie Manag. 13(3), 130–146 (2010)

    Google Scholar 

  7. Li, Y., Dong, M., Kothari, R.: Classifiability-based omnivariate decision trees. IEEE Trans. Neural Netw. 16(6), 1547–1560 (2005)

    Article  Google Scholar 

  8. Liang, J., Qin, Z., Xiao, S., Ou, L., Lin, X.: Efficient and secure decision tree classification for cloud-assisted online diagnosis services. IEEE Trans. Dependable Secure Comput. 18(4), 1632–1644 (2021). https://doi.org/10.1109/TDSC.2019.2922958

    Article  Google Scholar 

  9. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. Handb. Comput. Econ. 1, 87–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Murthy, S.K., Kasif, S., Salzberg, S.: A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994)

    Article  MATH  Google Scholar 

  11. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Rosset, S.: Model selection via the AUC. In: Proceedings of the Twenty-First International Conference on Machine Learning, ICML 2004, p. 89. Association for Computing Machinery, New York (2004). https://doi.org/10.1145/1015330.1015400

  13. Singh, M., Wadhwa, P.K., Kaur, S.: Predicting protein function using decision tree. In: Ardil, C. (ed.) Proceedings of World Academy of Science, Engineering and Technology, Bangkok, Thailand, 21–23 May 2008, vol. 29, p. 350+ (2008)

    Google Scholar 

  14. Song, Y.Y., Lu, Y.: Decision tree methods: applications for classification and prediction. Shanghai Arch. Psychiatry 27, 130–135 (2015)

    Google Scholar 

  15. Wickramarachchi, D., Robertson, B., Reale, M., Price, C., Brown, J.: HHCART: an oblique decision tree. Comput. Stat. Data Anal. 96, 12–23 (2016). https://doi.org/10.1016/j.csda.2015.11.006

    Article  MathSciNet  MATH  Google Scholar 

  16. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008). https://doi.org/10.1007/s10115-007-0114-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica-Ioana Lung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suciu, MA., Lung, RI. (2023). A Game Theoretic Flavoured Decision Tree for Classification. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics