Skip to main content

Human-Centric Machine Learning Approach for Injection Mold Design: Towards Automated Ejector Pin Placement

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Nowadays, injection molds are manually designed by humans using computer-aided design (CAD) systems. The placement of ejector pins is a critical step in the injection mold design to enable demolding complex parts in the production. Since each injection mold is unique, designers are limited in using standard ejector layouts or previous mold designs, which results in high design time so that an automation of the design process is needed. For such a system, human knowledge is essential. Therefore, we propose a human-centric machine learning (HCML) approach for the automatic placement of ejector pins for injection molds. In this work, we extract mental models of injection mold designers to obtain machine-readable fundamental design rules and train a machine learning model using an ongoing human-machine learning approach.

The work of RWTH Aachen University within the AutoEnSys joint research project is funded by the German Federal Ministry of Education and Research (BMBF) under the grant number 01IS20081C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ehrlenspiel, K., Kiewert, A., Mörtl, M., Lindemann, U.: Kostengünstig Entwickeln und Konstruieren. Kostenmanagement bei der integrierten Produktentwicklung, 8th edn. Springer, Heidelberg (2020)

    Google Scholar 

  2. Kwak, S., Kim, T., Park, S., Lee, K.: Layout and sizing of ejector pins for injection mould desian using the wavelet transform. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 217(4), 463–473 (2003). https://doi.org/10.1243/095440503321628143

  3. Chin, K.-S., Wong, T.N.: An expert system for injection mold cost estimation. Adv. Polym. Technol. 14(4), 303–314 (1995). https://doi.org/10.1002/ADV.1995.060140404

    Article  Google Scholar 

  4. Sterman, J.D.: Business Dynamics. Systems Thinking and Modeling for a Complex World. Irwin/McGraw-Hill, Boston (2000)

    Google Scholar 

  5. Wang, Z., et al.: Optimum ejector system design for plastic injection moulds. Int. J. Comput. Appl. Technol. 9(4), 211–218. (1996). ScholarBank@NUS Repository. https://doi.org/10.1504/IJMPT.1996.036339

  6. Ferreira, I., Cabral, J.A., Saraiva, P., Oliveira, M.C.: A multidisciplinary framework to support the design of injection mold tools. Struct. Multidisc. Optim. 49(3), 501–521 (2014). https://doi.org/10.1007/s00158-013-0990-x

    Article  Google Scholar 

  7. Alvarado-Iniesta, A., Cuate, O., Schütze, O.: Multi-objective and many objective design of plastic injection molding process. Int. J. Adv. Manuf. Technol. 102(9–12), 3165–3180 (2019). https://doi.org/10.1007/s00170-019-03432-8

    Article  Google Scholar 

  8. Li, K., Yan, S., Zhong, Y., Pan, W., Zhao, G.: Multi-objective optimization of the fiber-reinforced composite injection molding process using Taguchi method, RSM, and NSGA-II. Simul. Model. Pract. Theory 91, 69–82 (2019). https://doi.org/10.1016/j.simpat.2018.09.003

    Article  Google Scholar 

  9. Chin, K.-S., Wong, T.N.: An expert system for injection mold cost estimation. Adv. Polym. Technol. 9(4), 303–314 (1995). https://doi.org/10.1002/ADV.1995.060140404

    Article  Google Scholar 

  10. Kaluarachchi, T., Reis, A., Nanayakkara, S.: A review of recent deep learning approaches in human-centered machine learning. 21(7) (2021). https://doi.org/10.3390/s21072514

  11. Sperrle, F., et al.: A survey of human-centered evaluations in human-centered machine learning. Comput. Graph. Forum 40(3), 543–568 (2021). https://doi.org/10.1111/cgf.14329

    Article  Google Scholar 

  12. Gary, M.S., Wood, R.E.: Unpacking mental models through laboratory experiments. Syst. Dyn. Rev. 32(2), 101–129 (2016). https://doi.org/10.1002/sdr.1560

    Article  Google Scholar 

  13. Bubeck, S.: Convex Optimization. Algorithms and Complexity. Foundations and Trends® in Machine Learning Ser, 26th. Now Publishers, Norwell (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Jungnickel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jungnickel, R., Lauwigi, J., Samsonov, V., Lütticke, D. (2023). Human-Centric Machine Learning Approach for Injection Mold Design: Towards Automated Ejector Pin Placement. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics