Skip to main content

Biologically Inspired Unified Artificial Immune System for Industrial Equipment Diagnostic

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2022)

Abstract

Modern high-tech industrial enterprises are equipped with sophisticated equipment and microprocessor technology. The maintenance of such production facilities is an expensive procedure, and the replacement of equipment due to breakdown or wear and tear leads to significant financial costs. In the oil and gas industry, the idle operation of an enterprise for several hours or a working day can cause serious losses to the company. In this regard, it is relevant to develop intelligent diagnostic systems aimed at timely detection of faults, assessing the degree of their criticality and predicting possible breakdowns in the future. The use of bioinspired machine learning methods for diagnosing industrial equipment in real industrial production is a promising area of research. The article presents the developed diagnostic system for industrial equipment based on the methodology of analysis of modes, failures of their influence, degree of criticality (Failure Mode and Effects Analysis, FMEA) and a unified artificial immune system (UAIS), created on the basis of systematization and classification of modified algorithms of artificial immune systems (AIS). Unification is used to select the most efficient modified AIS algorithm based on the theories of clonal selection, negative selection and the immune network for processing heterogeneous data. UAIS is especially effective in the analysis of dynamically changing production data and a small number of training samples corresponding to equipment failures. Simulation results obtained on real data of TengizChevroil refinery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rueil-Malmaison. Start-ups from Schneider Electric and Microsoft’s joint accelerator are transforming the energy sector in Europe with artificial intelligence. Press release Schneider Electric, pp. 1–3 (2020)

    Google Scholar 

  2. Sundaram, K., Natarajan, N.: Artificial intelligence in the shop floor envisioning the future of intelligent automation and its impact on manufacturing. A Frost & Sullivan White Paper, pp. 1–17 (2018)

    Google Scholar 

  3. Torres, P.: Improve OEE with Artificial Intelligence at the Edge in Food Manufacturing (2019)

    Google Scholar 

  4. https://industrial.omron.ru/

  5. Cutello, V., Nicosia, G.: Multiple learning using immune algorithms. In: Proceedings of 4th International Conference on Recent Advances in Soft Computing, RASC, pp. 102–107 (2022)

    Google Scholar 

  6. Cutello, V., Lee, D., Nicosia, G., Pavone, M., Prizzi, I.: Aligning multiple protein sequences by hybrid clonal selection algorithm with insert-remove-gaps and blockshuffling operators. In: Bersini, H., Carneiro, J. (eds.) ICARIS 2006. LNCS, vol. 4163, pp. 321–334. Springer, Heidelberg (2006). https://doi.org/10.1007/11823940_25

    Chapter  Google Scholar 

  7. Ciccazzo, A., Conca, P., Nicosia, G., Stracquadanio, G.: An advanced clonal selection algorithm with ad-hoc network-based hypermutation operators for synthesis of topology and sizing of analog electrical circuits. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 60–70. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85072-4_6

    Chapter  Google Scholar 

  8. Conca, P., Nicosia, G., Stracquadanio, G., Timmis, J.: Nominal-yield-area tradeoff in automatic synthesis of analog circuits: a genetic programming approach using immune-inspired operators. In: NASA/ESA Conference on Adaptive Hardware and Systems, pp. 399–406 (2009)

    Google Scholar 

  9. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005). https://doi.org/10.1007/11536444_2

    Chapter  Google Scholar 

  10. Cutello, V., Nicosia, G.: A clonal selection algorithm for coloring, hitting set and satisfiability problems. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds.) NAIS/WIRN -2005. LNCS, vol. 3931, pp. 324–337. Springer, Heidelberg (2006). https://doi.org/10.1007/11731177_39

    Chapter  Google Scholar 

  11. Kim, Y., Nam, W., Lee, J.: Multiclass anomaly detection for unsupervised and semi-supervised data based on a combination of negative selection and clonal selection algorithms. Appl. Soft Comput. 122(108838), 1–12 (2022). https://doi.org/10.1016/j.asoc.2022.108838

    Article  Google Scholar 

  12. Haouari, A.T., Souici-Meslati, L., Atil, F., Meslati, D.: Empirical comparison and evaluation of artificial immune systems in inter-release software fault prediction. Appl. Soft Comput. 96, 1–18 (2020)

    Article  Google Scholar 

  13. Park, H., Choi, J., Kim, D., Hong, S.J.: Artifical immune system for fault detection and classification of semiconductor equipment. Electronics 10(8), 944 (2021). https://doi.org/10.3390/electronics10080944

    Article  Google Scholar 

  14. Fasanotti, L., Cavalieri, S., Dovere, E., Gaiardelli, P., Pereira, C.E.: An artificial immune intelligent maintenance system for distributed industrial environments. Proc. Inst. Mech. Eng. Part O J. Risk Reliab. 232(4), 401–414 (2018). https://doi.org/10.1177/1748006x18769208

    Article  Google Scholar 

  15. O’Keeffe, J.: Immune-Inspired Fault Diagnosis for Robot Swarms. University of York. Electronic Engineering, 127 p. (2019)

    Google Scholar 

  16. Mohapatra, S., Khilar, P.M., Swain, R.: Fault diagnosis in wireless sensor network using clonal selection principle and probabilistic neural network approach. Int. J. Commun. Syst. 32(16), 1–20 (2019). https://doi.org/10.1002/dac.4138

    Article  Google Scholar 

  17. Lan, C., Zhang, H., Sun, X., Ren, Z.: An intelligent diagnostic method based on optimizing B-cell pool clonal selection classification algorithm. Turk. J. Electr. Eng. Comput. Sci. 28, 3270–3284 (2020)

    Google Scholar 

  18. Tian, Y., Liu, X.: A deep adaptive learning method for rolling bearing fault diagnosis using immunity. Tsinghua Sci. Technol. 24(6), 1–14 (2019). https://doi.org/10.26599/TST.2018.9010144

    Article  Google Scholar 

  19. Sahu, S., Kumar, P.B., Parhi, D.R.: Analysis of hybrid CSA-DEA method for fault detection of cracked structures. J. Theor. Appl. Mech. 57(2), 369–382 (2019). https://doi.org/10.15632/jtam-pl/104590

    Article  Google Scholar 

  20. Pinto, C., Pinto, R., Gonçalves, G.: Towards bio-inspired anomaly detection using the cursory dendritic cell algorithm. Algorithms 15(1), 1–28 (2022). https://doi.org/10.3390/a15010001

    Article  Google Scholar 

  21. Häring, I.: Failure modes and effects analysis. In: Häring, I. (ed.) Technical Safety, Reliability and Resilience, pp. 101–126. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4272-9_7

    Chapter  Google Scholar 

  22. Signoret, J.P., Leroy, A.: Hazard and operability study (HAZOP). In: Signoret, J.P., Leroy, A. (eds.) Reliability Assessment of Safety and Production Systems. Springer Series in Reliability Engineering, pp. 157–164. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64708-7_9

    Chapter  Google Scholar 

  23. Fuentes-Bargue, J.L., González-Cruz, M., González-Gaya, C., Baixauli-Pérez, M.P.: Risk analysis of a fuel storage terminal using HAZOP and FTA. Int. J. Environ. Res. Public Health 14(705), 1–26 (2017). https://doi.org/10.3390/ijerph14070705

    Article  Google Scholar 

  24. Schaust, S., Szczerbicka, H.: Artificial immune systems in the context of misbehavior detection. Cybern. Syst. 39(2), 136–154 (2008). https://doi.org/10.1080/01969720701853434

    Article  MATH  Google Scholar 

  25. Read, M., Andrews, P.S., Timmis, J.: An introduction to artificial immune systems. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 1575–1597. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-540-92910-9_47

    Chapter  Google Scholar 

  26. Chen, Y., Wang, X., Zhang, Q., Tang, C.: Unified artificial immune system. In: Proceedings of 5th International Conference on Computational Intelligence and Communication Networks. Mathura, pp. 617–621 (2013). doi:https://doi.org/10.1109/CICN.2013.135

  27. Samigulina, G.A., Massimkanova, Z.: Development of modified cooperative particle swarm optimization with inertia weight for feature selection. Cogent Eng. 7(1), 1–10 (2020)

    Article  Google Scholar 

  28. Samigulina, G.A., Samigulina, Z.I.: Modified immune network algorithm based on the Random Forest approach for the complex objects control. Artif. Intell. Rev. 52(4), 2457–2473 (2018). https://doi.org/10.1007/s10462-018-9621-7

    Article  Google Scholar 

  29. Samigulina, G., Samigulina, Z.: Diagnostics of industrial equipment and faults prediction based on modified algorithms of artificial immune systems. J. Intell. Manuf. 33, 1–18 (2021). https://doi.org/10.1007/s10845-020-01732-5

    Article  Google Scholar 

  30. Permanent technological regulations for the process of extracting LPG at U-700. TengizChevroil, TP-ZVP-700-11 (2017)

    Google Scholar 

  31. KTL TCO COMPLEX COORDINATOR DAILY REPORT as of 11-January-2017

    Google Scholar 

Download references

Acknowledgements

This research has been funded by the Science Committee of the Ministry of Education and Science of the Republic Kazakhstan (Grant No. AP09258508) 2021–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zarina Samigulina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samigulina, G., Samigulina, Z. (2023). Biologically Inspired Unified Artificial Immune System for Industrial Equipment Diagnostic. In: Nicosia, G., et al. Machine Learning, Optimization, and Data Science. LOD 2022. Lecture Notes in Computer Science, vol 13811. Springer, Cham. https://doi.org/10.1007/978-3-031-25891-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25891-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25890-9

  • Online ISBN: 978-3-031-25891-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics