Skip to main content

Limits and Benefits of Using Telepresence Robots for Educational Purposes

  • Conference paper
  • First Online:
Learning in the Age of Digital and Green Transition (ICL 2022)

Abstract

The continuing spread of the COVID19 virus shows that adequate preparation for telepresence scenarios such as teleteaching is elementary for structured teaching in secondary education. There should be no negative impact on teaching quality, either in times of general crisis or simply as a measure to ensure institutional stability and individual flexibility in an increasingly digital world. State-of-the-art telepresence approaches include the possibility to use telerobotic systems or telepresence robots (TR). These systems are configured with an immersive interface such that users feel present in a remote environment, projecting their presence through the remote robot. While many professional tasks can be shifted away from the workplace rather easily, social aspects gain particular significance in the context of learning and education. By enabling physical and spatial interaction far beyond the possibilities of mere video conferencing, the high degree of social presence provided by TR can assist better learning experiences. TR can compensate for the lack of mobility or restricted travel options of students, educators or staff. TR can foster language learning and intercultural exchange, and TR can prepare students for the workspaces of tomorrow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallon, L., Abénia, A., Dubergey, F., Negui, M.: Using a telepresence robot in an educational context. In: Proceedings of the International Conference on Frontiers in Education: Computer Science and Computer Engineering (FECS). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp), pp. 16–22 (2019)

    Google Scholar 

  2. Edwards, A., et al.: ‘Robots in the classroom: differences in students’ perceptions of credibility and learning between “teacher as robot” and “robot as teacher.” Comput. Hum. Behav. 65, 627–634 (2016). https://doi.org/10.1016/j.chb.2016.06.005

    Article  Google Scholar 

  3. Fitter, N.T., Raghunath, N., Cha, E., Sanchez, C.A., Takayama, L., Matarić, M.J.: Are we there yet? comparing remote learning technologies in the university classroom. IEEE Robot. Autom. Lett. 5(2), 2706–2713 (2020)

    Article  Google Scholar 

  4. Dimitoglou, G.: Telepresence: evaluation of robot stand-ins for remote student learning. J. Comput. Sci. Coll. 35(3), 97–111 (2019)

    Google Scholar 

  5. Fernández-Llamas, C., et al.: May i teach you? students’ behavior when lectured by robotic vs. human teachers. Comput. Hum. Behav. 80, 460–469 (2018). https://doi.org/10.1016/j.chb.2017.09.028

  6. Cheung, S.K.S., Li, R., Phusavat, K., Paoprasert, N., Kwok, L. (eds.): ICBL 2020. LNCS, vol. 12218. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51968-1

    Book  Google Scholar 

  7. Okundaye, O., et al.: Telepresence robotics for hands-on distance instruction. In: Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society, pp. 1–11 (2020). https://doi.org/10.1145/3419249.3420116

  8. Velinov, A., Koceski, S., Koceska, N.: Review of the usage of telepresence robots in education. Balkan J. Appl. Math. Inf. 4(1), 27–40 (2021)

    Google Scholar 

  9. Burbank, M.D., Goldsmith, M.M., Bates, A.J., Spikner, J., Park, K.: Teacher observations using telepresence robots: benefits and challenges for strengthening evaluations. J. Educ. Supervision 4(1), 68 (2021). https://doi.org/10.31045/jes.4.1.6

  10. Kwon, O.H., Koo, S.Y., Kim, Y.G., Kwon, D.S.: Telepresence robot system for English tutoring. In: 2010 IEEE Workshop on Advanced Robotics and Its Social Impacts, pp. 152–155. IEEE (2010)

    Google Scholar 

  11. Liao, J.: Using telepresence robots to provide authentic communicative practices to remote foreign language learners. Thannual 75 (2016)

    Google Scholar 

  12. Liao, J., Lu, X.: Exploring the affordances of telepresence robots in foreign language learning. Lang. Learn. Technol. 22(3), 20–32 (2018)

    Google Scholar 

  13. Liao, J., Lu, X., Masters, K.A., Dudek, J., Zhou, Z.: Telepresence-place-based foreign language learning and its design principles. Comput. Assist. Lang. Learn. 35(3), 1–26 (2019)

    Google Scholar 

  14. Liao, J., Dudek, J.: Task design in telepresence-place-based foreign language learning. In: Gresalfi, M., Horn, I.S. (Eds.), The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020, vol. 3, pp.1807–1808. International Society of the Learning Sciences, Nashville, Tennessee (2020). https://doi.org/10.22318/icls2020.1807

  15. Randall, N.: A survey of robot-assisted language learning (RALL). ACM Trans. Hum.-Robot Interact. (THRI) 9(1), 1–36 (2019)

    Google Scholar 

  16. Shin, K.W.C., Han, J.H.: Qualitative exploration on children’s interactions in telepresence robot assisted language learning. J. Korea Convergence Soc. 8(3), 177–184 (2017)

    Article  Google Scholar 

  17. Tanaka, F., Takahashi, T., Matsuzoe, S., Tazawa, N., Morita, M.: Child-operated telepresence robot: a field trial connecting classrooms between Australia and Japan. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5896–5901. IEEE (2013)

    Google Scholar 

  18. Han, J., Conti, D.: The use of UTAUT and post acceptance models to investigate the attitude towards a telepresence robot in an educational setting. Robotics 9(2), 34 (2020)

    Article  Google Scholar 

  19. Lim, M.S., Han, J.H.: Convergence technologies by a long-term case study on telepresence robot-assisted learning. J. Convergence Inf. Technol. 9(7), 106–113 (2019)

    Google Scholar 

  20. Fischer, A.J., Bloomfield, B.S., Clark, R.R., McClelland, A.L., Erchul, W.P.: Increasing student compliance with teacher instructions using telepresence robot problem-solving teleconsultation. Int. J. Sch. Educ. Psychol. 7(1), 158–172 (2019)

    Article  Google Scholar 

  21. Rinfret, S.R.: Telepresence robots: a new model for public administration course delivery. J. Public Aff. Educ. 26(3), 380–390 (2020)

    Article  Google Scholar 

  22. Cha, E., Chen, S., Mataric, M.J.: Designing telepresence robots for K-12 education. In: 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 683–688. IEEE (2017)

    Google Scholar 

  23. Schouten, A.P., Portegies, T.C., Withuis, I., Willemsen, L.M., Mazerant-Dubois, K.: Robomorphism: examining the effects of telepresence robots on between-student cooperation. Comput. Hum. Behav. 126, 106980 (2022). https://doi.org/10.1016/j.chb.2021

    Article  Google Scholar 

  24. Zoder-Martell, K.A., Floress, M.T., Schiuchetti, M.B., Markelz, A.M., Sayyeh, L.: Teachers’ willingness to use a telepresence robot for consultation with students with autism spectrum disorder. Contemp. Sch. Psychol. 26, 1–15 (2021). https://doi.org/10.1007/s40688-021-00359-4

    Article  Google Scholar 

  25. Wolff, F., Möller, J.: Telepräsenzroboter in der Hochschullehre: Befunde einer Längsschnittstudie sprechen für hohe Akzeptanz. die hochschullehre, 162–173 (2021). https://doi.org/10.3278/HSL2118W

  26. Kristoffersson, A., Coradeschi, S., Loutfi, A.: A review of mobile robotic telepresence. Adv. Hum.-Comput. Interact. (2013). https://doi.org/10.1155/2013/902316

  27. Newhart, V.A., Warschauer, M., Sender, L.: Virtual inclusion via telepresence robots in the classroom: an exploratory case study. Int. J. Technol. Learn. 23(4), 9–25 (2016)

    Article  Google Scholar 

  28. Newhart, V.A., Olson, J.S.: My student is a robot: how schools manage telepresence experiences for students. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 342–347 (2017). https://doi.org/10.1145/3025453.3025809

  29. Reis, A., Martins, M., Martins, P., Sousa, J., Barroso, J.: Telepresence robots in the classroom: the state-of-the-art and a proposal for a telepresence service for higher education. In: International Conference on Technology and Innovation in Learning, Teaching and Education, pp. 539–550. Springer, Cham (2018)

    Google Scholar 

  30. Rueben, M., et al.: Long-term, in-the-wild study of feedback about speech intelligibility for K-12 students attending class via a telepresence robot. In: Proceedings of the 2021 International Conference on Multimodal Interaction, pp. 567–576 (2021)

    Google Scholar 

  31. Soares, N., Kay, J.C., Craven, G.: Mobile robotic telepresence solutions for the education of hospitalized children. Perspect. Health Inf. Manag. 14(Fall) (2017)

    Google Scholar 

  32. Weibel, M., et al.: Back to school with telepresence robot technology: a qualitative pilot study about how telepresence robots help school-aged children and adolescents with cancer to remain socially and academically connected with their school classes during treatment. Nurs. Open 7(4), 988–997 (2020). https://doi.org/10.1002/nop2.471

    Article  Google Scholar 

  33. Furuya, Y., Takashio, K.: Telepresence robot blended with a real landscape and its impact on user experiences. In: 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), pp. 406–411 (2020). https://doi.org/10.1109/RO-MAN47096.2020.9223346

  34. Ferjaoui, D., Cheniti Belcadhi, L.: A conceptual model for personalized learning based on educational robots. In: Eighth International Conference on Technological Ecosystems for Enhancing Multiculturality, pp. 29–33 (2020)

    Google Scholar 

  35. De Jong, D.: Telepresence robots: a phenomenological study of perceptions of graduate students and professors. J. High. Educ. Theor. Pract. 21(5), 143–161 (2021)

    Google Scholar 

  36. Bloss, R.: High school student goes to class robotically. Ind. Robot: Int. J. 38(5), 465–468 (2011)

    Article  Google Scholar 

  37. Schmucker, M., Reiswich, A., Pfeifer, C., De Mey, V., Haag, M.: Mobile robotic telepresence between hospital and school: lessons learned. In: dHealth 2020–Biomedical Informatics for Health and Care. IOS Press, pp 256–262 (2020)

    Google Scholar 

  38. Yousif, J.: Social and telepresence robots a future of teaching. Artif. Intell. Robot. Develop. J. 1(1), 58–65 (2021)

    Google Scholar 

  39. Botev, J., Rodríguez Lera, F.J.: Immersive robotic telepresence for remote educational scenarios. Sustainability 13, 4717 (2021). https://doi.org/10.3390/su13094717

    Article  Google Scholar 

  40. Ahumada-Newhart, V., Olson, J.S.: Going to school on a robot: robot and user interface design features that matter. ACM Trans. Comput.-Hum. Interact. (TOCHI) 26(4), 1–28 (2019)

    Article  Google Scholar 

  41. Khojasteh, N., Liu, C., Fussell, S.R.: Understanding undergraduate students’ experiences of telepresence robots on campus. In: Conference Companion Publication of the 2019 on Computer Supported Cooperative Work and Social Computing, pp. 241–246 (2019)

    Google Scholar 

  42. Wernbacher, T., et al.: Trine: telepresence robots in education. In: Proceedings of INTED2022 Conference, vol. 7 (2022)

    Google Scholar 

  43. Tota, P., Vaida, M.F.: Dedicated applications of telepresence robots for education. ACTA Technica Napocensis 60(2), 7–11 (2019)

    Google Scholar 

Download references

Acknowledgements

The project “TRinE – Telepresence Robots in Education” (https://www.trine-platform.com/) is funded by the European Union under the Erasmus+ programme. Project Reference: 2020–1-MT01-KA227-SCH-092408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wernbacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Häfner, P. et al. (2023). Limits and Benefits of Using Telepresence Robots for Educational Purposes. In: Auer, M.E., Pachatz, W., Rüütmann, T. (eds) Learning in the Age of Digital and Green Transition. ICL 2022. Lecture Notes in Networks and Systems, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-031-26190-9_3

Download citation

Publish with us

Policies and ethics