Skip to main content

FBCF: A Fuzzy-Based Brake-Assisting Control Function for Rail Vehicles Using Type-1 and Type-2 Fuzzy Inference Models

  • Conference paper
  • First Online:
Advances in Internet, Data & Web Technologies (EIDWT 2023)

Abstract

In railway networks, the driver expertise such as accuracy, physical and experience condition has a major impact on the quality of comfort for rail car passengers. In our previous work, we have proposed a Fuzzy-based brake-assisting function considering velocity, brake level and environment to assist the rail drivers. In this paper, we consider the gravitational acceleration level and slope angle as additional parameters to control the brake-assisting function. We present a comparison study for Type-2 and Type-1 inference models. The proposed system, called Fuzzy-based Brake-assisting Control Function (FBCF), provides intelligent braking for passengers and train drivers by considering five input parameters. The simulation results show that the proposed FBCF provides soft brake assistance considering various situations created by the train and rail environment in order that the passengers have a comfortable feeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asprilla, A.M., Martinez, W.H., Munoz, L.E., Cortes, C.A.: Design of an embedded hardware for motor control of a high performance electric vehicle. In: Proceedings of the IEEE Workshop on Power Electronics and Power Quality Applications (PEPQA-2017), pp. 1–5 (2017)

    Google Scholar 

  2. Balan, K., Manuel, M.P., Faied, M., Krishnan, M., Santora, M.: A fuzzy based accessibility model for disaster environment. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA-2019), pp. 2304–2310 (2019)

    Google Scholar 

  3. Cena, G., Cibrario Bertolotti, I., Hu, T., Valenzano, A.: On a software-defined CAN controller for embedded systems. Comput. Stan. Interfaces 63, 43–51 (2019). https://www.sciencedirect.com/science/article/pii/S0920548918302101

  4. Chen, C., Xu, J., Ji, W., Rong, L., Lin, G.: Sliding mode robust adaptive control of maglev vehicle’s nonlinear suspension system based on flexible track: design and experiment. IEEE Access 7, 41874–41884 (2019)

    Article  Google Scholar 

  5. Chimatapu, R., Hagras, H., Kern, M., Owusu, G.: Hybrid deep learning type-2 fuzzy logic systems for explainable AI. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE-2020), pp. 1–6 (2020)

    Google Scholar 

  6. Ghallabi, F., Nashashibi, F., El-Haj-Shhade, G., Mittet, M.A.: LIDAR-based lane marking detection for vehicle positioning in an HD map. In: Proceedings of the 21st International Conference on Intelligent Transportation Systems (ITSC-2018), pp. 2209–2214 (2018)

    Google Scholar 

  7. Gupta, I., Riordan, D., Sampalli, S.: Cluster-head election using fuzzy logic for wireless sensor networks. In: Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR-2005), pp. 255–260 (2005)

    Google Scholar 

  8. Iwnicki, S.: Handbook of Railway Vehicle Dynamics. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  9. Jammeh, E.A., Fleury, M., Wagner, C., Hagras, H., Ghanbari, M.: Interval type-2 fuzzy logic congestion control for video streaming across IP networks. IEEE Trans. Fuzzy Syst. 17(5), 1123–1142 (2009)

    Article  Google Scholar 

  10. Knothe, K., Grassie, S.: Modelling of railway track and vehicle/track interaction at high frequencies. Veh. Syst. Dyn. 22(3–4), 209–262 (1993)

    Article  Google Scholar 

  11. Li, T.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  12. Liu, Z., Wang, Y., Liu, S., Li, Z., Zhang, H., Zhang, Z.: An approach to suppress low-frequency oscillation by combining extended state observer with model predictive control of emus rectifier. IEEE Trans. Power Electron. 34(10), 10282–10297 (2019)

    Article  Google Scholar 

  13. Mamdani, E.H.: Application of fuzzy algorithms for control of simple dynamic plant. In: Proceedings of the Institution of Electrical Engineers. 12, vol. 121, pp. 1585–1588 (Dec 1974)

    Google Scholar 

  14. Noori, K., Jenab, K.: Fuzzy reliability-based traction control model for intelligent transportation systems. IEEE Trans. Syst. Man Cybern.: Syst. 43(1), 229–234 (2013)

    Article  Google Scholar 

  15. Petrakis, E.G.M., Sotiriadis, S., Soultanopoulos, T., Renta, P.T., Buyya, R., Bessis, N.: Internet of things as a service (iTaaS): challenges and solutions for management of sensor data on the cloud and the fog. Internet Things 3–4, 156–174 (2018)

    Article  Google Scholar 

  16. Ruan, J., Jiang, H., Li, X., Shi, Y., Chan, F.T.S., Rao, W.: A granular GA-SVM predictor for big data in agricultural cyber-physical systems. IEEE Trans. Ind. Inf. 15(12), 6510–6521 (2019)

    Article  Google Scholar 

  17. Sekine, S., Nishimura, M.: Application of fuzzy neural network control to automatic train operation. In: Proceedings of 1995 IEEE International Conference on Fuzzy Systems. vol. 5, pp. 39–40 (1995)

    Google Scholar 

  18. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  19. Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: distributed filtering for T-S fuzzy systems. IEEE Trans. Ind. Inf. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  20. Sun, Y., Xu, J., Qiang, H., Lin, G.: Adaptive neural-fuzzy robust position control scheme for maglev train systems with experimental verification. IEEE Trans. Ind. Electron. 66(11), 8589–8599 (2019)

    Article  Google Scholar 

  21. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. SMC 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  22. Tsuneyoshi, M., Ikeda, M., Barolli, L.: A brake assisting function for railway vehicles using fuzzy logic: A comparison study for different fuzzy inference types. In: Proceedings of the 17th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA-2022). pp. 301–311 (Oct 2022)

    Google Scholar 

  23. Wehner, P., Schwiegelshohn, F., Gohringer, D., Hubner, M.: Development of driver assistance systems using virtual hardware-in-the-loop. In: Proceedings of the International Symposium on Integrated Circuits (ISIC-2014). pp. 380–383 (Dec 2014)

    Google Scholar 

  24. Yazdani, S., Montazeri-Gh, M.: A novel gas turbine fault detection and identification strategy based on hybrid dimensionality reduction and uncertain rule-based fuzzy logic. Computers in Industry 115 (2020), https://www.sciencedirect.com/science/article/pii/S0166361519303811

  25. Zadeh, L.: Fuzzy logic, neural networks, and soft computing. ACM Communications pp. 77–84 (1994)

    Google Scholar 

  26. Zhai, W., Wang, K., Cai, C.: Fundamentals of vehicle-track coupled dynamics. Veh. Syst. Dyn. 47(11), 1349–1376 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsuneyoshi, M., Ikeda, M., Barolli, L. (2023). FBCF: A Fuzzy-Based Brake-Assisting Control Function for Rail Vehicles Using Type-1 and Type-2 Fuzzy Inference Models. In: Barolli, L. (eds) Advances in Internet, Data & Web Technologies. EIDWT 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 161. Springer, Cham. https://doi.org/10.1007/978-3-031-26281-4_44

Download citation

Publish with us

Policies and ethics