Skip to main content

Unreliability-Aware Disentangling for Cross-Domain Semi-supervised Pedestrian Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Included in the following conference series:

Abstract

The rapid progress of pedestrian detection is supported by the ever-growing labeled training data and elaborate neural-network-based model. However, adequate labeled training data are not always accessible when it comes to a new scene. Semi-supervised learning is promising for the case where a small amount of manually annotated images and a large amount of unannotated images are handy. In the semi-supervised setting, data generation is a powerful technique as a type of data augmentation. Some methods conduct data generation by disentangling pedestrian instances into different codes in latent space and combining codes of different instances to reconstruct new instances. However, these methods either work in a single domain or cannot handle the case where some instances are partially represented in the images. In this work, we propose to solve code-level information transferring from reliable domains to unreliable domains by incorporating a domain classifier that competes with the disentangling module to generate domain-invariant codes. An external classifier is trained on appearance-enhanced instances and sends integrity signals to the generative module, which facilitates the generative module to recognize fully/partially represented pedestrian instances. The resulting classifier ultimately renders high-quality pseudo-annotations for the unannotated data. The pseudo-annotated data, combined with a small amount of manually annotated data, are used to achieve a detector with more generalization and accuracy. We perform extensive experiments on multiple challenging benchmarks to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brazil, G., Yin, X., Liu, X.: Illuminating pedestrians via simultaneous detection & segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4950–4959 (2017)

    Google Scholar 

  2. Cai, Z., Fan, Q., Feris, R.S., Vasconcelos, N.: A unified multi-scale deep convolutional neural network for fast object detection. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 354–370. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_22

    Chapter  Google Scholar 

  3. Chen, Z., Ouyang, W., Liu, T., Tao, D.: A shape transformation-based dataset augmentation framework for pedestrian detection. Int. J. Comput. Vis. 129(4), 1121–1138 (2021)

    Article  Google Scholar 

  4. Cheung, E., Wong, A., Bera, A., Manocha, D.: Mixedpeds: Pedestrian detection in unannotated videos using synthetically generated human-agents for training. Proc. AAAI Conf. Artif. Intell. 32(1) (2018)

    Google Scholar 

  5. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: PedHunter: occlusion robust pedestrian detector in crowded scenes. Proc. AAAI Conf. Artif. Intell. 34(07), 10639–10646 (2020)

    Google Scholar 

  6. Chi, C., Zhang, S., Xing, J., Lei, Z., Li, S.Z., Zou, X.: Relational learning for joint head and human detection. Proc. AAAI Conf. Artif. Intell. 34(07), 10647–10654 (2020)

    Google Scholar 

  7. Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: a benchmark. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 304–311. IEEE (2009)

    Google Scholar 

  8. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27 (2014)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  12. Huang, X., Liu, M.-Y., Belongie, S., Kautz, J.: Multimodal unsupervised image-to-image translation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 179–196. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_11

    Chapter  Google Scholar 

  13. Kim, J.U., Park, S., Ro, Y.M.: Robust small-scale pedestrian detection with cued recall via memory learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3050–3059 (2021)

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  15. Lee, H.-Y., Tseng, H.-Y., Huang, J.-B., Singh, M., Yang, M.-H.: Diverse image-to-image translation via disentangled representations. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 36–52. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_3

    Chapter  Google Scholar 

  16. Li, C., Xu, T., Zhu, J., Zhang, B.: Triple generative adversarial nets. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  17. Li, J., Liang, X., Shen, S., Xu, T., Feng, J., Yan, S.: Scale-aware fast R-CNN for pedestrian detection. IEEE Trans. Multimedia 20(4), 985–996 (2017)

    Google Scholar 

  18. Lin, S., Wu, W., Wu, S., Xu, Y., Wong, H.S.: Unreliable-to-reliable instance translation for semi-supervised pedestrian detection. IEEE Trans. Multimedia 24, 728–739 (2021)

    Article  Google Scholar 

  19. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  20. Liu, S., Huang, D., Wang, Y.: Adaptive NMS: refining pedestrian detection in a crowd. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6459–6468 (2019)

    Google Scholar 

  21. Liu, W., Liao, S., Hu, W., Liang, X., Chen, X.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 643–659. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_38

    Chapter  Google Scholar 

  22. Liu, W., Liao, S., Ren, W., Hu, W., Yu, Y.: High-level semantic feature detection: a new perspective for pedestrian detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5187–5196 (2019)

    Google Scholar 

  23. Mao, J., Xiao, T., Jiang, Y., Cao, Z.: What can help pedestrian detection? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3127–3136 (2017)

    Google Scholar 

  24. Mhalla, A., Maamatou, H., Chateau, T., Gazzah, S., Amara, N.E.B.: Faster R-CNN scene specialization with a sequential Monte-Carlo framework. In: 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2016)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems 28 (2015)

    Google Scholar 

  26. Rosenberg, C., Hebert, M., Schneiderman, H.: Semi-supervised self-training of object detection models. In: 2005 7th IEEE Workshops on Applications of Computer Vision (WACV/MOTION’05) - Volume 1, vol. 1, pp. 29–36 (2005)

    Google Scholar 

  27. Wang, M., Wang, X.: Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In: CVPR 2011, pp. 3401–3408. IEEE (2011)

    Google Scholar 

  28. Wang, X., Wang, M., Li, W.: Scene-specific pedestrian detection for static video surveillance. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 361–374 (2013)

    Article  Google Scholar 

  29. Wang, X., Hua, G., Han, T.X.: Detection by detections: non-parametric detector adaptation for a video. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 350–357. IEEE (2012)

    Google Scholar 

  30. Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C.: Repulsion loss: detecting pedestrians in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7774–7783 (2018)

    Google Scholar 

  31. Wu, J., Zhou, C., Zhang, Q., Yang, M., Yuan, J.: Self-mimic learning for small-scale pedestrian detection. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2012–2020 (2020)

    Google Scholar 

  32. Wu, J., Peng, Y., Zheng, C., Hao, Z., Zhang, J.: PMC-GANs: generating multi-scale high-quality pedestrian with multimodal cascaded GANs. arXiv preprint arXiv:1912.12799 (2019)

  33. Wu, S., Lin, S., Wu, W., Azzam, M., Wong, H.S.: Semi-supervised pedestrian instance synthesis and detection with mutual reinforcement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5057–5066 (2019)

    Google Scholar 

  34. Wu, S., Wong, H.S., Wang, S.: Variant semiboost for improving human detection in application scenes. IEEE Trans. Circ. Syst. Video Technol. 28(7), 1595–1608 (2017)

    Article  Google Scholar 

  35. Wu, S., Wu, W., Lei, S., Lin, S., Li, R., Yu, Z., Wong, H.S.: Semi-supervised human detection via region proposal networks aided by verification. IEEE Trans. Image Process. 29, 1562–1574 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wu, W., Jiao, Q., Wong, H.S., Li, G., Wu, S.: Learning scene-adaptive pseudo annotations for pedestrian detection in semi-supervised scenarios. Knowl. Based Syst. 243, 108439 (2022)

    Article  Google Scholar 

  37. Zeng, X., Ouyang, W., Wang, M., Wang, X.: Deep learning of scene-specific classifier for pedestrian detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 472–487. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_31

    Chapter  Google Scholar 

  38. Zhang, L., Lin, L., Liang, X., He, K.: Is faster R-CNN doing well for pedestrian detection? In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 443–457. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_28

    Chapter  Google Scholar 

  39. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestrian detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3221 (2017)

    Google Scholar 

  40. Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1116–1124 (2015)

    Google Scholar 

  41. Zheng, Z., Yang, X., Yu, Z., Zheng, L., Yang, Y., Kautz, J.: Joint discriminative and generative learning for person re-identification. In: proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2138–2147 (2019)

    Google Scholar 

  42. Zhou, C., Yuan, J.: Bi-box regression for pedestrian detection and occlusion estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 138–154. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_9

    Chapter  Google Scholar 

  43. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  44. Zou, Y., Yang, X., Yu, Z., Kumar, B.V.K.V., Kautz, J.: Joint disentangling and adaptation for cross-domain person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 87–104. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_6

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Guangdong Province (Project No. 2020A1515010484, 2022A1515011160), in part by the National Natural Science Foundation of China (Project No. 62072189), and in part by the Research Grants Council of the Hong Kong Special Administration Region (Project No. CityU 11201220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Wu, S., Wong, HS. (2023). Unreliability-Aware Disentangling for Cross-Domain Semi-supervised Pedestrian Detection. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics