Skip to main content

DILane: Dynamic Instance-Aware Network for Lane Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13842))

Included in the following conference series:

  • 282 Accesses

Abstract

Lane detection is a challenging task in computer vision and a critical technology in autonomous driving. The task requires the prediction of the topology of lane lines in complex scenarios; moreover, different types and instances of lane lines need to be distinguished. Most existing studies are based only on a single-level feature map extracted by deep neural networks. However, both high-level and low-level features are important for lane detection, because lanes are easily affected by illumination and occlusion, i.e., texture information is unavailable in non-visual evidence case; when the lanes are clearly visible, the curved and slender texture information plays a more important role in improving the detection accuracy. In this study, the proposed DILane utilizes both high-level and low-level features for accurate lane detection. First, in contrast to mainstream detection methods of predefined fixed-position anchors, we define learnable anchors to perform statistics of potential lane locations. Second, we propose a dynamic head aiming at leveraging low-level texture information to conditionally enhance high-level semantic features for each proposed instance. Finally, we present a self-attention module to gather global information in parallel, which remarkably improves detection accuracy. The experimental results on two mainstream public benchmarks demonstrate that our proposed method outperforms previous works with the F1 score of 79.43% for CULane and 97.80% for TuSimple dataset while achieving 148+ FPS.

Code is available at https://github.com/CZY-Code/DILane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badue, C., et al.: Self-driving cars: a survey. Expert Syst. Appl. 165, 113816 (2021)

    Article  Google Scholar 

  2. Berriel, R.F., de Aguiar, E., De Souza, A.F., Oliveira-Santos, T.: Ego-lane analysis system (ELAS): dataset and algorithms. Image Vis. Comput. 68, 64–75 (2017)

    Article  Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  4. Philion, J.: FastDraw: addressing the long tail of lane detection by adapting a sequential prediction network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11582–11591 (2019)

    Google Scholar 

  5. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  6. TuSimple: Tusimple benchmark (2020). https://github.com/TuSimple/tusimple-benchmark/

  7. Zheng, T., et al.: RESA: recurrent feature-shift aggregator for lane detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3547–3554 (2021)

    Google Scholar 

  8. Feng, Z., Guo, S., Tan, X., Xu, K., Wang, M., Ma, L.: Rethinking efficient lane detection via curve modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17062–17070 (2022)

    Google Scholar 

  9. Liu, R., Yuan, Z., Liu, T., Xiong, Z.: End-to-end lane shape prediction with transformers. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 3694–3702 (2021)

    Google Scholar 

  10. Qu, Z., Jin, H., Zhou, Y., Yang, Z., Zhang, W.: Focus on local: detecting lane marker from bottom up via key point. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14122–14130 (2021)

    Google Scholar 

  11. Wang, J., et al.: A keypoint-based global association network for lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1392–1401 (2022)

    Google Scholar 

  12. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: Keep your eyes on the lane: real-time attention-guided lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 294–302 (2021)

    Google Scholar 

  13. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5561–5569 (2017)

    Google Scholar 

  14. Lee, S., et al.: VPGNet: vanishing point guided network for lane and road marking detection and recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1947–1955 (2017)

    Google Scholar 

  15. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)

  16. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018)

  17. Si, C., Yu, W., Zhou, P., Zhou, Y., Wang, X., Yan, S.: Inception transformer. arXiv preprint arXiv:2205.12956 (2022)

  18. Neven, D., De Brabandere, B., Georgoulis, S., Proesmans, M., Gool, V.L.: Towards end-to-end lane detection: an instance segmentation approach. In: IEEE Intelligent Vehicles Symposium (IV), IEEE 2018, pp. 286–291 (2018)

    Google Scholar 

  19. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection CNNs by self attention distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1013–1021 (2019)

    Google Scholar 

  20. Xu, H., Wang, S., Cai, X., Zhang, W., Liang, X., Li, Z.: CurveLane-NAS: unifying lane-sensitive architecture search and adaptive point blending. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 689–704. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_41

    Chapter  Google Scholar 

  21. Li, X., Li, J., Hu, X., Yang, J.: Line-CNN: end-to-end traffic line detection with line proposal unit. IEEE Trans. Intell. Transp. Syst. 21, 248–258 (2019)

    Article  Google Scholar 

  22. Su, J., Chen, C., Zhang, K., Luo, J., Wei, X., Wei, X.: Structure guided lane detection. arXiv preprint arXiv:2105.05403 (2021)

  23. Zheng, T., et al.: CLRNet: cross layer refinement network for lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 898–907 (2022)

    Google Scholar 

  24. Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 276–291. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_17

    Chapter  Google Scholar 

  25. Qin, Z., Zhang, P., Li, X.: Ultra fast deep lane detection with hybrid anchor driven ordinal classification. IEEE Trans. Pattern Anal. Mach. Intell. (2022)

    Google Scholar 

  26. Liu, L., Chen, X., Zhu, S., Tan, P.: CondLaneNet: a top-to-down lane detection framework based on conditional convolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3773–3782 (2021)

    Google Scholar 

  27. Zhang, F., Zhu, X., Wang, C.: Single person pose estimation: a survey. arXiv preprint arXiv:2109.10056 (2021)

  28. Ko, Y., Lee, Y., Azam, S., Munir, F., Jeon, M., Pedrycz, W.: Key points estimation and point instance segmentation approach for lane detection. IEEE Trans. Intell. Transp. Syst. 23, 8949–8958 (2021)

    Google Scholar 

  29. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: PolyLaneNet: lane estimation via deep polynomial regression. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6150–6156. IEEE (2021)

    Google Scholar 

  30. Jin, D., Park, W., Jeong, S.G., Kwon, H., Kim, C.S.: Eigenlanes: Data-driven lane descriptors for structurally diverse lanes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17163–17171 (2022)

    Google Scholar 

  31. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  33. Tian, Z., Shen, C., Chen, H.: Conditional convolutions for instance segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 282–298. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_17

    Chapter  Google Scholar 

  34. Wang, X., Zhang, R., Kong, T., Li, L., Shen, C.: SOLOv2: dynamic and fast instance segmentation. In: Advances in Neural Information Processing Systems (2020)

    Google Scholar 

  35. Jia, X., De Brabandere, B., Tuytelaars, T., Gool, L.V.: Dynamic filter networks. In: Advances in Neural Information Processing Systems (2016)

    Google Scholar 

  36. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: CondConv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  37. Sun, P., et al.: Sparse R-CNN: end-to-end object detection with learnable proposals. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14454–14463 (2021)

    Google Scholar 

  38. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  39. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  40. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  41. Chowdhery, A., et al.: Palm: scaling language modeling with pathways. arXiv preprint arXiv:2204.02311 (2022)

  42. Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  43. Stewart, R., Andriluka, M., Ng, A.Y.: End-to-end people detection in crowded scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2325–2333 (2016)

    Google Scholar 

  44. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  45. Han, J., et al.: Laneformer: Object-aware row-column transformers for lane detection. arXiv preprint arXiv:2203.09830 (2022)

Download references

Acknowledgements

This work was supported in part by the National Key R &D Program of China (2018AAA0102801 and 2018AAA0102803), and in part of the National Natural Science Foundation of China (61772424, 61702418, and 61602383).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanwen Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cheng, Z., Zhang, G., Wang, C., Zhou, W. (2023). DILane: Dynamic Instance-Aware Network for Lane Detection. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13842. Springer, Cham. https://doi.org/10.1007/978-3-031-26284-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26284-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26283-8

  • Online ISBN: 978-3-031-26284-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics