Abstract
With more and more large-scale datasets available for training, visual tracking has made great progress in recent years. However, current research in the field mainly focuses on tracking generic objects. In this paper, we present TSFMO, a benchmark for Tracking Small and Fast Moving Objects. This benchmark aims to encourage research in developing novel and accurate methods for this challenging task particularly. TSFMO consists of 250 sequences with about 50k frames in total. Each frame in these sequences is carefully and manually annotated with a bounding box. To the best of our knowledge, TSFMO is the first benchmark dedicated to tracking small and fast moving objects, especially connected to sports. To understand how existing methods perform and to provide comparison for future research on TSFMO, we extensively evaluate 20 state-of-the-art trackers on the benchmark. The evaluation results exhibit that more effort are required to improve tracking small and fast moving objects. Moreover, to encourage future research, we proposed a novel tracker S-KeepTrack which surpasses all 20 evaluated approaches. By releasing TSFMO, we expect to facilitate future researches and applications of tracking small and fast moving objects. The TSFMO and evaluation results as well as S-KeepTrack are available at https://github.com/CodeOfGithub/S-KeepTrack.
Z. Zhang and F. Wu—These authors contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadi, K., Salari, E.: Small dim object tracking using frequency and spatial domain information. Pattern Recogn. 58, 227–234 (2016)
Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56
Bhat, G., Danelljan, M., et al.: Learning discriminative model prediction for tracking. In: ICCV, pp. 6182–6191 (2019)
Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Know your surroundings: exploiting scene information for object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_13
Bolme, D.S., Beveridge, J.R., et al.: Visual object tracking using adaptive correlation filters. In: CVPR, pp. 2544–2550 (2010)
Cao, Z., Fu, C., et al.: HiFT: hierarchical feature transformer for aerial tracking. In: ICCV, pp. 15437–15446 (2021)
Chen, C., Liu, M.-Y., Tuzel, O., Xiao, J.: R-CNN for small object detection. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 214–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_14
Chen, X., Yan, B., et al.: Transformer tracking. In: CVPR, pp. 8122–8131 (2021)
Chicco, D.: Siamese neural networks: an overview. In: Cartwright, H. (ed.) Artificial Neural Networks. MMB, vol. 2190, pp. 73–94. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-0826-5_3
Colyer, S.L., Evans, M., et al.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med. Open 4, 1–15 (2018)
Danelljan, M., Bhat, G., et al.: ATOM: accurate tracking by overlap maximization. In: CVPR, pp. 4655–4664 (2019)
Danelljan, M., Hager, G., et al.: Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)
Danelljan, M., Hager, G., et al.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)
Danelljan, M., Van Gool, L. Timofte, R.: Probabilistic regression for visual tracking. In: CVPR, pp. 7183–7192 (2020)
Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29
DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: CVPRW, pp. 337-1–337-12 (2018)
Fan, H., Bai, H., et al.: LaSOT: a high-quality large-scale single object tracking benchmark. Int. J. Comput. Vis. 129, 439–461 (2021). https://doi.org/10.1007/s11263-020-01387-y
Fan, H., Lin, L., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR, pp. 5369–5378 (2019)
Fan, H., Miththanthaya, H.A., et al.: Transparent object tracking benchmark. arXiv (2020)
Fan, H., Yang, F., et al.: TracKlinic: diagnosis of challenge factors in visual tracking. In: WACV, pp. 969–978 (2021)
Galoogahi, H.K., Fagg, A., et al.: Need for speed: a benchmark for higher frame rate object tracking. In: ICCV, pp. 1134–1143 (2017)
Gong, Y., Yu, X., et al.: Effective fusion factor in FPN for tiny object detection. In: WACV, pp. 1159–1167 (2021)
Guo, D., Shao, Y., et al.: Graph attention tracking. In: CVPR, pp. 9538–9547 (2021)
Guo, D., Wang, J., et al.: Siamese fully convolutional classification and regression for visual tracking. In: CVPR, pp. 6269–6277 (2020)
Hong, M., Li, S., et al.: SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)
Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1562–1577 (2021)
Huang, Y., Llach, J., Zhang, C.: A method of small object detection and tracking based on particle filters. In: ICPR, pp. 1–4 (2008)
Jiang, J., Zhang, X.: Research on moving object tracking technology of sports video based on deep learning algorithm. In: ICISCAE (2021)
Jiao, L., Wang, D., et al.: Deep learning in visual tracking: a review. IEEE Trans. Neural Netw. Learn. Syst. (2021)
Kembhavi, A., Harwood, D., Davis, L.S.: Vehicle detection using partial least squares. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1250–1265 (2011)
Kerr, R.: Technologies for judging, umpiring and refereeing. In: Sport and Technology, pp. 114–134. Manchester University Press (2016)
Kong, T., Sun, F., et al.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)
Kristan, M., Leonardis, A., et al.: The visual object tracking VOT2017 challenge results. In: ICCVW, pp. 1949–1972 (2017)
Kristan, M., et al.: The eighth visual object tracking VOT2020 challenge results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 547–601. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_39
Kristan, M., Matas, J., et al.: A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2137–2155 (2016)
Lapinski, M., Brum Medeiros, C., et al.: A wide-range, wireless wearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching. Sensors 19(17), 3637 (2019)
Li, A., Lin, M., et al.: NUS-PRO: a new visual tracking challenge. IEEE Trans. Pattern Anal. Mach. Intell. 38, 335–349 (2016)
Li, B., Wu, W., et al.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: CVPR, pp. 4282–4291 (2019)
Li, F., Tian, C., et al.: Learning spatial-temporal regularized correlation filters for visual tracking. In: CVPR, pp. 4904–4913 (2018)
Li, S., Jiang, Q., Zhao, Q., Lu, L., Feng, Z.: Asymmetric discriminative correlation filters for visual tracking. Front. Inf. Technol. Electron. Eng. 21(10), 1467–1484 (2020). https://doi.org/10.1631/FITEE.1900507
Li, S., Liu, Y., et al.: Learning residue-aware correlation filters and refining scale estimates with the GrabCut for real-time UAV tracking. In: 3DV, pp. 1238–1248 (2021)
Li, S., Liu, Y., et al.: Learning residue-aware correlation filters and refining scale for real-time UAV tracking. Pattern Recogn. 127, 108614 (2022)
Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18
Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24, 5630–5644 (2015)
Liu, C., Ding, W., et al.: Aggregation signature for small object tracking. IEEE Trans. Image Process. 29, 1738–1747 (2020)
Lu, H., Wang, D.D.: Online Visual Tracking. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0469-9
Lukežič, A., Kart, U., et al.: CDTB: a color and depth visual object tracking dataset and benchmark. In: ICCV, pp. 10012–10021 (2019)
Ma, C., Huang, J.B., et al.: Hierarchical convolutional features for visual tracking. In: ICCV, pp. 3074–3082 (2015)
Mayer, C., Danelljan, M., et al.: Learning target candidate association to keep track of what not to track. In: ICCV, pp. 13424–13434 (2021)
Mazzeo, P.L., Ramakrishnan, S., Spagnolo, P.: Visual object tracking with deep neural networks (2019)
Morariu, V.I., Ahmed, E., et al.: Composite discriminant factor analysis. In: WCACV, pp. 564–571 (2014)
Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27
Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_19
Rozumnyi, D., Matas, J., et al.: The world of fast moving objects. In: CVPR, pp. 4838–4846 (2017)
Sarlin, P.E., DeTone, D., et al.: SuperGlue: learning feature matching with graph neural networks. In: CVPR, pp. 4937–4946 (2020)
Song, S., Xiao, J.: Tracking revisited using RGBD camera: unified benchmark and baselines. In: ICCV, pp. 233–240 (2013)
Tamir, I., Bar-eli, M.: The moral gatekeeper: soccer and technology, the case of Video Assistant Referee (VAR). Front. Psychol. 11, 613469 (2020)
Tong, K., Wu, Y., Zhou, F.: Recent advances in small object detection based on deep learning: a review. Image Vis. Comput. 97, 103910 (2020)
Valmadre, J., Bertinetto, L., et al.: Long-term tracking in the wild: a benchmark. ArXiv abs/1803.09502 (2018)
Wang, N., Zhou, W., et al.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: CVPR, pp. 1571–1580 (2021)
Wang, Q., Zhang, L., et al.: Fast online object tracking and segmentation: a unifying approach. In: CVPR, pp. 1328–1338 (2019)
Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)
Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1834–1848 (2015)
Xu, Y., Wang, Z., et al.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: AAAI, vol. 34, pp. 12549–12556 (2020)
Xue, Y., Song, Y., et al.: Automatic video annotation system for archival sports video. In: WACVW, pp. 23–28 (2017)
Yan, B., Peng, H., et al.: LightTrack: finding lightweight neural networks for object tracking via one-shot architecture search. In: CVPR, pp. 15175–15184 (2021)
Zaveri, M.A., Merchant, S.N., Desai, U.B.: Small and fast moving object detection and tracking in sports video sequences. In: ICME, vol. 3, pp. 1539–1542 (2004)
Zhang, Z., Liu, Y., et al.: Learn to match: automatic matching network design for visual tracking. In: ICCV, pp. 13319–13328 (2021)
Zhang, Z., Peng, H.: Ocean: object-aware anchor-free tracking. ArXiv abs/2006.10721 (2020)
Zhang, Z., Peng, H., Wang, Q.: Deeper and wider siamese networks for real-time visual tracking. In: CVPR, pp. 4586–4595 (2019)
Zhou, Z., Pei, W., et al.: Saliency-associated object tracking. In: ICCV, pp. 9846–9855 (2021)
Zita, A., Šroubek, F.: Tracking fast moving objects by segmentation network. In: ICPR, pp. 10312–10319 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Wu, F., Qiu, Y., Liang, J., Li, S. (2023). Tracking Small and Fast Moving Objects: A Benchmark. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_33
Download citation
DOI: https://doi.org/10.1007/978-3-031-26293-7_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26292-0
Online ISBN: 978-3-031-26293-7
eBook Packages: Computer ScienceComputer Science (R0)