Skip to main content

Tracking Small and Fast Moving Objects: A Benchmark

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13847))

Included in the following conference series:

Abstract

With more and more large-scale datasets available for training, visual tracking has made great progress in recent years. However, current research in the field mainly focuses on tracking generic objects. In this paper, we present TSFMO, a benchmark for Tracking Small and Fast Moving Objects. This benchmark aims to encourage research in developing novel and accurate methods for this challenging task particularly. TSFMO consists of 250 sequences with about 50k frames in total. Each frame in these sequences is carefully and manually annotated with a bounding box. To the best of our knowledge, TSFMO is the first benchmark dedicated to tracking small and fast moving objects, especially connected to sports. To understand how existing methods perform and to provide comparison for future research on TSFMO, we extensively evaluate 20 state-of-the-art trackers on the benchmark. The evaluation results exhibit that more effort are required to improve tracking small and fast moving objects. Moreover, to encourage future research, we proposed a novel tracker S-KeepTrack which surpasses all 20 evaluated approaches. By releasing TSFMO, we expect to facilitate future researches and applications of tracking small and fast moving objects. The TSFMO and evaluation results as well as S-KeepTrack are available at https://github.com/CodeOfGithub/S-KeepTrack.

Z. Zhang and F. Wu—These authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadi, K., Salari, E.: Small dim object tracking using frequency and spatial domain information. Pattern Recogn. 58, 227–234 (2016)

    Article  Google Scholar 

  2. Bertinetto, L., Valmadre, J., Henriques, J.F., Vedaldi, A., Torr, P.H.S.: Fully-convolutional siamese networks for object tracking. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9914, pp. 850–865. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48881-3_56

    Chapter  Google Scholar 

  3. Bhat, G., Danelljan, M., et al.: Learning discriminative model prediction for tracking. In: ICCV, pp. 6182–6191 (2019)

    Google Scholar 

  4. Bhat, G., Danelljan, M., Van Gool, L., Timofte, R.: Know your surroundings: exploiting scene information for object tracking. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 205–221. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_13

    Chapter  Google Scholar 

  5. Bolme, D.S., Beveridge, J.R., et al.: Visual object tracking using adaptive correlation filters. In: CVPR, pp. 2544–2550 (2010)

    Google Scholar 

  6. Cao, Z., Fu, C., et al.: HiFT: hierarchical feature transformer for aerial tracking. In: ICCV, pp. 15437–15446 (2021)

    Google Scholar 

  7. Chen, C., Liu, M.-Y., Tuzel, O., Xiao, J.: R-CNN for small object detection. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10115, pp. 214–230. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54193-8_14

    Chapter  Google Scholar 

  8. Chen, X., Yan, B., et al.: Transformer tracking. In: CVPR, pp. 8122–8131 (2021)

    Google Scholar 

  9. Chicco, D.: Siamese neural networks: an overview. In: Cartwright, H. (ed.) Artificial Neural Networks. MMB, vol. 2190, pp. 73–94. Springer, New York (2021). https://doi.org/10.1007/978-1-0716-0826-5_3

    Chapter  Google Scholar 

  10. Colyer, S.L., Evans, M., et al.: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system. Sports Med. Open 4, 1–15 (2018)

    Article  Google Scholar 

  11. Danelljan, M., Bhat, G., et al.: ATOM: accurate tracking by overlap maximization. In: CVPR, pp. 4655–4664 (2019)

    Google Scholar 

  12. Danelljan, M., Hager, G., et al.: Learning spatially regularized correlation filters for visual tracking. In: ICCV, pp. 4310–4318 (2015)

    Google Scholar 

  13. Danelljan, M., Hager, G., et al.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017)

    Article  Google Scholar 

  14. Danelljan, M., Van Gool, L. Timofte, R.: Probabilistic regression for visual tracking. In: CVPR, pp. 7183–7192 (2020)

    Google Scholar 

  15. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  16. DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperPoint: self-supervised interest point detection and description. In: CVPRW, pp. 337-1–337-12 (2018)

    Google Scholar 

  17. Fan, H., Bai, H., et al.: LaSOT: a high-quality large-scale single object tracking benchmark. Int. J. Comput. Vis. 129, 439–461 (2021). https://doi.org/10.1007/s11263-020-01387-y

    Article  Google Scholar 

  18. Fan, H., Lin, L., et al.: LaSOT: a high-quality benchmark for large-scale single object tracking. In: CVPR, pp. 5369–5378 (2019)

    Google Scholar 

  19. Fan, H., Miththanthaya, H.A., et al.: Transparent object tracking benchmark. arXiv (2020)

    Google Scholar 

  20. Fan, H., Yang, F., et al.: TracKlinic: diagnosis of challenge factors in visual tracking. In: WACV, pp. 969–978 (2021)

    Google Scholar 

  21. Galoogahi, H.K., Fagg, A., et al.: Need for speed: a benchmark for higher frame rate object tracking. In: ICCV, pp. 1134–1143 (2017)

    Google Scholar 

  22. Gong, Y., Yu, X., et al.: Effective fusion factor in FPN for tiny object detection. In: WACV, pp. 1159–1167 (2021)

    Google Scholar 

  23. Guo, D., Shao, Y., et al.: Graph attention tracking. In: CVPR, pp. 9538–9547 (2021)

    Google Scholar 

  24. Guo, D., Wang, J., et al.: Siamese fully convolutional classification and regression for visual tracking. In: CVPR, pp. 6269–6277 (2020)

    Google Scholar 

  25. Hong, M., Li, S., et al.: SSPNet: scale selection pyramid network for tiny person detection from UAV images. IEEE Geosci. Remote Sens. Lett. 19, 1–5 (2022)

    Article  Google Scholar 

  26. Huang, L., Zhao, X., Huang, K.: GOT-10k: a large high-diversity benchmark for generic object tracking in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 43, 1562–1577 (2021)

    Article  Google Scholar 

  27. Huang, Y., Llach, J., Zhang, C.: A method of small object detection and tracking based on particle filters. In: ICPR, pp. 1–4 (2008)

    Google Scholar 

  28. Jiang, J., Zhang, X.: Research on moving object tracking technology of sports video based on deep learning algorithm. In: ICISCAE (2021)

    Google Scholar 

  29. Jiao, L., Wang, D., et al.: Deep learning in visual tracking: a review. IEEE Trans. Neural Netw. Learn. Syst. (2021)

    Google Scholar 

  30. Kembhavi, A., Harwood, D., Davis, L.S.: Vehicle detection using partial least squares. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1250–1265 (2011)

    Article  Google Scholar 

  31. Kerr, R.: Technologies for judging, umpiring and refereeing. In: Sport and Technology, pp. 114–134. Manchester University Press (2016)

    Google Scholar 

  32. Kong, T., Sun, F., et al.: FoveaBox: beyound anchor-based object detection. IEEE Trans. Image Process. 29, 7389–7398 (2020)

    Article  MATH  Google Scholar 

  33. Kristan, M., Leonardis, A., et al.: The visual object tracking VOT2017 challenge results. In: ICCVW, pp. 1949–1972 (2017)

    Google Scholar 

  34. Kristan, M., et al.: The eighth visual object tracking VOT2020 challenge results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 547–601. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_39

    Chapter  Google Scholar 

  35. Kristan, M., Matas, J., et al.: A novel performance evaluation methodology for single-target trackers. IEEE Trans. Pattern Anal. Mach. Intell. 38, 2137–2155 (2016)

    Article  Google Scholar 

  36. Lapinski, M., Brum Medeiros, C., et al.: A wide-range, wireless wearable inertial motion sensing system for capturing fast athletic biomechanics in overhead pitching. Sensors 19(17), 3637 (2019)

    Article  Google Scholar 

  37. Li, A., Lin, M., et al.: NUS-PRO: a new visual tracking challenge. IEEE Trans. Pattern Anal. Mach. Intell. 38, 335–349 (2016)

    Article  Google Scholar 

  38. Li, B., Wu, W., et al.: SiamRPN++: evolution of siamese visual tracking with very deep networks. In: CVPR, pp. 4282–4291 (2019)

    Google Scholar 

  39. Li, F., Tian, C., et al.: Learning spatial-temporal regularized correlation filters for visual tracking. In: CVPR, pp. 4904–4913 (2018)

    Google Scholar 

  40. Li, S., Jiang, Q., Zhao, Q., Lu, L., Feng, Z.: Asymmetric discriminative correlation filters for visual tracking. Front. Inf. Technol. Electron. Eng. 21(10), 1467–1484 (2020). https://doi.org/10.1631/FITEE.1900507

    Article  Google Scholar 

  41. Li, S., Liu, Y., et al.: Learning residue-aware correlation filters and refining scale estimates with the GrabCut for real-time UAV tracking. In: 3DV, pp. 1238–1248 (2021)

    Google Scholar 

  42. Li, S., Liu, Y., et al.: Learning residue-aware correlation filters and refining scale for real-time UAV tracking. Pattern Recogn. 127, 108614 (2022)

    Article  Google Scholar 

  43. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  44. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24, 5630–5644 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Liu, C., Ding, W., et al.: Aggregation signature for small object tracking. IEEE Trans. Image Process. 29, 1738–1747 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lu, H., Wang, D.D.: Online Visual Tracking. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-0469-9

    Book  Google Scholar 

  47. Lukežič, A., Kart, U., et al.: CDTB: a color and depth visual object tracking dataset and benchmark. In: ICCV, pp. 10012–10021 (2019)

    Google Scholar 

  48. Ma, C., Huang, J.B., et al.: Hierarchical convolutional features for visual tracking. In: ICCV, pp. 3074–3082 (2015)

    Google Scholar 

  49. Mayer, C., Danelljan, M., et al.: Learning target candidate association to keep track of what not to track. In: ICCV, pp. 13424–13434 (2021)

    Google Scholar 

  50. Mazzeo, P.L., Ramakrishnan, S., Spagnolo, P.: Visual object tracking with deep neural networks (2019)

    Google Scholar 

  51. Morariu, V.I., Ahmed, E., et al.: Composite discriminant factor analysis. In: WCACV, pp. 564–571 (2014)

    Google Scholar 

  52. Mueller, M., Smith, N., Ghanem, B.: A benchmark and simulator for UAV tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 445–461. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_27

    Chapter  Google Scholar 

  53. Müller, M., Bibi, A., Giancola, S., Alsubaihi, S., Ghanem, B.: TrackingNet: a large-scale dataset and benchmark for object tracking in the wild. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 310–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_19

    Chapter  Google Scholar 

  54. Rozumnyi, D., Matas, J., et al.: The world of fast moving objects. In: CVPR, pp. 4838–4846 (2017)

    Google Scholar 

  55. Sarlin, P.E., DeTone, D., et al.: SuperGlue: learning feature matching with graph neural networks. In: CVPR, pp. 4937–4946 (2020)

    Google Scholar 

  56. Song, S., Xiao, J.: Tracking revisited using RGBD camera: unified benchmark and baselines. In: ICCV, pp. 233–240 (2013)

    Google Scholar 

  57. Tamir, I., Bar-eli, M.: The moral gatekeeper: soccer and technology, the case of Video Assistant Referee (VAR). Front. Psychol. 11, 613469 (2020)

    Article  Google Scholar 

  58. Tong, K., Wu, Y., Zhou, F.: Recent advances in small object detection based on deep learning: a review. Image Vis. Comput. 97, 103910 (2020)

    Article  Google Scholar 

  59. Valmadre, J., Bertinetto, L., et al.: Long-term tracking in the wild: a benchmark. ArXiv abs/1803.09502 (2018)

    Google Scholar 

  60. Wang, N., Zhou, W., et al.: Transformer meets tracker: exploiting temporal context for robust visual tracking. In: CVPR, pp. 1571–1580 (2021)

    Google Scholar 

  61. Wang, Q., Zhang, L., et al.: Fast online object tracking and segmentation: a unifying approach. In: CVPR, pp. 1328–1338 (2019)

    Google Scholar 

  62. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)

    Google Scholar 

  63. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1834–1848 (2015)

    Article  Google Scholar 

  64. Xu, Y., Wang, Z., et al.: SiamFC++: towards robust and accurate visual tracking with target estimation guidelines. In: AAAI, vol. 34, pp. 12549–12556 (2020)

    Google Scholar 

  65. Xue, Y., Song, Y., et al.: Automatic video annotation system for archival sports video. In: WACVW, pp. 23–28 (2017)

    Google Scholar 

  66. Yan, B., Peng, H., et al.: LightTrack: finding lightweight neural networks for object tracking via one-shot architecture search. In: CVPR, pp. 15175–15184 (2021)

    Google Scholar 

  67. Zaveri, M.A., Merchant, S.N., Desai, U.B.: Small and fast moving object detection and tracking in sports video sequences. In: ICME, vol. 3, pp. 1539–1542 (2004)

    Google Scholar 

  68. Zhang, Z., Liu, Y., et al.: Learn to match: automatic matching network design for visual tracking. In: ICCV, pp. 13319–13328 (2021)

    Google Scholar 

  69. Zhang, Z., Peng, H.: Ocean: object-aware anchor-free tracking. ArXiv abs/2006.10721 (2020)

    Google Scholar 

  70. Zhang, Z., Peng, H., Wang, Q.: Deeper and wider siamese networks for real-time visual tracking. In: CVPR, pp. 4586–4595 (2019)

    Google Scholar 

  71. Zhou, Z., Pei, W., et al.: Saliency-associated object tracking. In: ICCV, pp. 9846–9855 (2021)

    Google Scholar 

  72. Zita, A., Šroubek, F.: Tracking fast moving objects by segmentation network. In: ICPR, pp. 10312–10319 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiwang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Z., Wu, F., Qiu, Y., Liang, J., Li, S. (2023). Tracking Small and Fast Moving Objects: A Benchmark. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13847. Springer, Cham. https://doi.org/10.1007/978-3-031-26293-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26293-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26292-0

  • Online ISBN: 978-3-031-26293-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics