Skip to main content

Non-monotone k-Submodular Function Maximization with Individual Size Constraints

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13831))

Included in the following conference series:

  • 973 Accesses

Abstract

In the problem of maximizing non-monotone k-submodular function f under individual size constraints, the goal is to maximize the value of k disjoint subsets with size upper bounds \(B_1,B_2,\ldots ,B_k\), respectively. This problem generalized both submodular maximization and k-submodular maximization problem with total size constraint. In this paper, we propose two results about this kind of problem. One is a \(\frac{1}{B_m+4}\)-approximation algorithm, where \(B_m=\max \{B_1,B_2,\ldots ,B_k\}\). The other is a bi-criteria algorithm with approximation ratio \(\frac{1}{4}\), where each subset is allowed to exceed the size constraint by up to \(B_m\), and in the worst case, only one subset will exceed \(B_m\).

Supported by Natural Science Foundation of Shandong Province of China (Nos. ZR2020MA029, ZR2021MA100) and National Science Foundation of China (No. 12001335).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ene, A., Nguyen, H.: Streaming algorithm for monotone \(k\)-submodular maximization with cardinality constraints. In: Proceedings of ICML, pp. 5944–5967 (2022)

    Google Scholar 

  2. Huber, A., Kolmogorov, V.: Towards minimizing k-submodular functions. In: Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS, vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32147-4_40

    Chapter  Google Scholar 

  3. Iwata, S., Tanigawa, S., Yoshida, Y.: Improved approximation algorithms for \(k\)-submodular function maximization. In: Proceedings of SODA, pp. 404–413 (2016)

    Google Scholar 

  4. Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9(8), 235–284 (2008)

    MATH  Google Scholar 

  5. Nguyen, L., Thai, M.: Streaming \(k\)-submodular maximization under noise subject to size constraint. In: Proceedings of ICML, pp. 7338–7347 (2020)

    Google Scholar 

  6. Ohsaka, N., Yoshida, Y.: Monotone \(k\)-submodular function maximization with size constraints. In: Proceedings of NeurIPS, pp. 694–702 (2015)

    Google Scholar 

  7. Oshima, H.: Improved randomized algorithm for \(k\)-submodular function maximization. SIAM J. Discrete Math. 35(1), 1–22 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Pham, C.V., Vu, Q.C., Ha, D.K.T., Nguyen, T.T.: Streaming algorithms for budgeted k-submodular maximization problem. In: Mohaisen, D., Jin, R. (eds.) CSoNet 2021. LNCS, vol. 13116, pp. 27–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91434-9_3

    Chapter  Google Scholar 

  9. Pham, C., Vu, Q., Ha, D., Nguyen, T., Le, N.: Maximizing \(k\)-submodular functions under budget constraint: applications and streaming algorithms. J. Comb. Optim. 44, 723–751 (2022). https://doi.org/10.1007/s10878-022-00858-x

    Article  MathSciNet  MATH  Google Scholar 

  10. Qian, C., Shi, J., Tang, K., Zhou, Z.: Constrained monotone \(k\)-submodular function maximization using multiobjective evolutionary algorithms with theoretical guarantee. IEEE Trans. Evol. Comput. 22, 595–608 (2018)

    Article  Google Scholar 

  11. Rafiey, A., Yoshida, Y.: Fast and private submodular and \(k\)-submodular functions maximization with matroid constraints. In: Proceeding of ICML, pp. 7887–7897 (2020)

    Google Scholar 

  12. Sakaue, S.: On maximizing a monotone \(k\)-submodular function subject to a matroid constraint. Discrete Optim. 23, 105–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shi, G., Gu, S., Wu, W.: \(k\)-submodular maximization with two kinds of constraints. Discrete Math. Algorithms Appl. 13(4), 2150036 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sun, Y., Liu, Y., Li, M.: Maximization of \(k\)-submodular function with a matroid constraint. In: Du, D.Z., Du, D., Wu, C., Xu, D. (eds.) TAMC 2022. LNCS, vol. 13571, pp. 1–10. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20350-3_1

    Chapter  Google Scholar 

  15. Tang, Z., Wang, C., Chan, H.: Monotone \(k\)-submodular secretary problems: cardinality and knapsack constraints. Theor. Comput. Sci. 921, 86–99 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone \(k\)-submodular function under a knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, B., Zhou, H.: Multilinear extension of \(k\)-submodular functions. arXiv:2107.07103 (2021)

  18. Ward, J., Živný, S.: Maximizing \(k\)-submodular functions and beyond. ACM Trans. Algorithms 12(4), 1–26 (2016). Article 47

    Google Scholar 

  19. Zheng, L., Chan, H., Loukides, G., Li, M.: Maximizing approximately \(k\)-submodular functions. In: Proceeding of SDM, pp. 414–422 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, H., Liu, Q., Zhou, Y., Li, M. (2023). Non-monotone k-Submodular Function Maximization with Individual Size Constraints. In: Dinh, T.N., Li, M. (eds) Computational Data and Social Networks . CSoNet 2022. Lecture Notes in Computer Science, vol 13831. Springer, Cham. https://doi.org/10.1007/978-3-031-26303-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26303-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26302-6

  • Online ISBN: 978-3-031-26303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics