Skip to main content

A Heuristic Algorithm for Student-Project Allocation Problem

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13831))

Included in the following conference series:

  • 689 Accesses

Abstract

The Student-Project Allocation problem with lecturer preferences over Students with Ties (SPA-ST) is to find a stable matching of students and projects to satisfy the constraints on student preferences over projects, lecturer preferences over students, and the maximum number of students given by each project and lecturer. This problem has attracted many researchers because of its wide applications in allocating students to projects at many universities worldwide. However, the main weakness of existing algorithms is their high computational cost. In this paper, we propose a heuristic algorithm to improve solution quality and execution time for solving the SPA-ST problem of large sizes. Experimental results on randomly generated datasets show that our algorithm outperforms the state-of-the-art algorithm regarding solution quality and execution time .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abraham, D.J., Irving, R.W., Manlove, D.F.: The student-project allocation problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 474–484. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_49

    Chapter  Google Scholar 

  2. Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-project allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aderanti, F.A., Amosa, R., Oluwatobiloba, A.: Development of student project allocation system using matching algorithm. In: International Conference Science Engineering Environmental Technology, vol. 1 (2016)

    Google Scholar 

  4. Binong, J.: Solving student project allocation with preference through weights. In: Bhattacharjee, D., Kole, D.K., Dey, N., Basu, S., Plewczynski, D. (eds.) Proceedings of International Conference on Frontiers in Computing and Systems. AISC, vol. 1255, pp. 423–430. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7834-2_40

    Chapter  Google Scholar 

  5. Calvo-Serrano, R., Guillén-Gosálbez, G., Kohn, S., Masters, A.: Mathematical programming approach for optimally allocating students’ projects to academics in large cohorts. Educ. Chem. Eng. 20, 11–21 (2017)

    Article  Google Scholar 

  6. Chiarandini, M., Fagerberg, R., Gualandi, S.: Handling preferences in student-project allocation. Ann. Oper. Res. 275(1), 39–78 (2019). https://doi.org/10.1007/s10479-017-2710-1

    Article  MathSciNet  MATH  Google Scholar 

  7. Cooper, F., Manlove, D.F.: A 3/2-approximation algorithm for the student-project allocation problem. In: 17th International Symposium on Experimental Algorithms, SEA 2018, 27–29 June 2018, L’Aquila, Italy, vol. 103, pp. 8:1–8:13 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.8

  8. Gani, M.A., Hamid, R.A., et al.: Optimum allocation of graduation projects: Survey and proposed solution. J. Al-Qadisiyah Comput. Sci. Math. 13(1), 58 (2021)

    Google Scholar 

  9. Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and incomplete lists. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 141–145. Lyon, France (2002)

    Google Scholar 

  10. Harper, P.R., de Senna, V., Vieira, I.T., Shahani, A.K.: A genetic algorithm for the project assignment problem. Comput. Oper. Res. 32(5), 1255–1265 (2005)

    Article  MATH  Google Scholar 

  11. Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties. In: SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44985-X_24

    Chapter  Google Scholar 

  12. Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for the student-project allocation problem with preferences over projects. J. Discrete Algorithms 13, 59–66 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Király, Z.: Linear time local approximation algorithm for maximum stable marriage. Algorithms 6(1), 471–484 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal matchings in the student/project allocation problem. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 213–225. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19315-1_19

    Chapter  Google Scholar 

  15. Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to the student-project allocation problem with preferences over projects. In: Proceedings of 5th International Symposium on Combinatorial Optimization, pp. 213–225. Mo-rocco (2018)

    Google Scholar 

  16. Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to the student-project allocation problem with preferences over projects. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS, vol. 10856, pp. 313–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4_27

    Chapter  Google Scholar 

  17. Manlove, D.F.: Algorithmics of Matching Under Preferences, Series on Theoretical Computer Science, vol. 2 (2013). https://doi.org/10.1142/8591

  18. Manlove, D.F., O’Malley, G.: Student-project allocation with preferences over projects. J. Discrete Algorithms 6(4), 553–560 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Olaosebikan, S., Manlove, D.: An algorithm for strong stability in the student-project allocation problem with ties. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 384–399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_31

    Chapter  Google Scholar 

  20. Olaosebikan, S., Manlove, D.: Super-stability in the student-project allocation problem with ties. J. Comb. Optim. 43, 1–37 (2020). https://doi.org/10.1007/s10878-020-00632-x

    Article  MathSciNet  MATH  Google Scholar 

  21. Paunović, V., Tomić, S., Bosnić, I., Žagar, M.: Fuzzy approach to student-project allocation (spa) problem. IEEE Access 7, 136046–136061 (2019)

    Article  Google Scholar 

  22. Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Exp. Algorithmics 14(1), 1–2 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoang Huu Viet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Uyen, N.T., Nguyen, G.L., Pham, C.V., Sang, T.X., Viet, H.H. (2023). A Heuristic Algorithm for Student-Project Allocation Problem. In: Dinh, T.N., Li, M. (eds) Computational Data and Social Networks . CSoNet 2022. Lecture Notes in Computer Science, vol 13831. Springer, Cham. https://doi.org/10.1007/978-3-031-26303-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26303-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26302-6

  • Online ISBN: 978-3-031-26303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics