Abstract
The Student-Project Allocation problem with lecturer preferences over Students with Ties (SPA-ST) is to find a stable matching of students and projects to satisfy the constraints on student preferences over projects, lecturer preferences over students, and the maximum number of students given by each project and lecturer. This problem has attracted many researchers because of its wide applications in allocating students to projects at many universities worldwide. However, the main weakness of existing algorithms is their high computational cost. In this paper, we propose a heuristic algorithm to improve solution quality and execution time for solving the SPA-ST problem of large sizes. Experimental results on randomly generated datasets show that our algorithm outperforms the state-of-the-art algorithm regarding solution quality and execution time .
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abraham, D.J., Irving, R.W., Manlove, D.F.: The student-project allocation problem. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 474–484. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24587-2_49
Abraham, D.J., Irving, R.W., Manlove, D.F.: Two algorithms for the student-project allocation problem. J. Discrete Algorithms 5(1), 73–90 (2007)
Aderanti, F.A., Amosa, R., Oluwatobiloba, A.: Development of student project allocation system using matching algorithm. In: International Conference Science Engineering Environmental Technology, vol. 1 (2016)
Binong, J.: Solving student project allocation with preference through weights. In: Bhattacharjee, D., Kole, D.K., Dey, N., Basu, S., Plewczynski, D. (eds.) Proceedings of International Conference on Frontiers in Computing and Systems. AISC, vol. 1255, pp. 423–430. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7834-2_40
Calvo-Serrano, R., Guillén-Gosálbez, G., Kohn, S., Masters, A.: Mathematical programming approach for optimally allocating students’ projects to academics in large cohorts. Educ. Chem. Eng. 20, 11–21 (2017)
Chiarandini, M., Fagerberg, R., Gualandi, S.: Handling preferences in student-project allocation. Ann. Oper. Res. 275(1), 39–78 (2019). https://doi.org/10.1007/s10479-017-2710-1
Cooper, F., Manlove, D.F.: A 3/2-approximation algorithm for the student-project allocation problem. In: 17th International Symposium on Experimental Algorithms, SEA 2018, 27–29 June 2018, L’Aquila, Italy, vol. 103, pp. 8:1–8:13 (2018). https://doi.org/10.4230/LIPIcs.SEA.2018.8
Gani, M.A., Hamid, R.A., et al.: Optimum allocation of graduation projects: Survey and proposed solution. J. Al-Qadisiyah Comput. Sci. Math. 13(1), 58 (2021)
Gent, I.P., Prosser, P.: An empirical study of the stable marriage problem with ties and incomplete lists. In: Proceedings of the 15th European Conference on Artificial Intelligence, pp. 141–145. Lyon, France (2002)
Harper, P.R., de Senna, V., Vieira, I.T., Shahani, A.K.: A genetic algorithm for the project assignment problem. Comput. Oper. Res. 32(5), 1255–1265 (2005)
Irving, R.W., Manlove, D.F., Scott, S.: The hospitals/residents problem with ties. In: SWAT 2000. LNCS, vol. 1851, pp. 259–271. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44985-X_24
Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation bounds for the student-project allocation problem with preferences over projects. J. Discrete Algorithms 13, 59–66 (2012)
Király, Z.: Linear time local approximation algorithm for maximum stable marriage. Algorithms 6(1), 471–484 (2013)
Kwanashie, A., Irving, R.W., Manlove, D.F., Sng, C.T.S.: Profile-based optimal matchings in the student/project allocation problem. In: KratochvÃl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 213–225. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19315-1_19
Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to the student-project allocation problem with preferences over projects. In: Proceedings of 5th International Symposium on Combinatorial Optimization, pp. 213–225. Mo-rocco (2018)
Manlove, D., Milne, D., Olaosebikan, S.: An integer programming approach to the student-project allocation problem with preferences over projects. In: Lee, J., Rinaldi, G., Mahjoub, A.R. (eds.) ISCO 2018. LNCS, vol. 10856, pp. 313–325. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96151-4_27
Manlove, D.F.: Algorithmics of Matching Under Preferences, Series on Theoretical Computer Science, vol. 2 (2013). https://doi.org/10.1142/8591
Manlove, D.F., O’Malley, G.: Student-project allocation with preferences over projects. J. Discrete Algorithms 6(4), 553–560 (2008)
Olaosebikan, S., Manlove, D.: An algorithm for strong stability in the student-project allocation problem with ties. In: Changat, M., Das, S. (eds.) CALDAM 2020. LNCS, vol. 12016, pp. 384–399. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39219-2_31
Olaosebikan, S., Manlove, D.: Super-stability in the student-project allocation problem with ties. J. Comb. Optim. 43, 1–37 (2020). https://doi.org/10.1007/s10878-020-00632-x
Paunović, V., Tomić, S., Bosnić, I., Žagar, M.: Fuzzy approach to student-project allocation (spa) problem. IEEE Access 7, 136046–136061 (2019)
Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Exp. Algorithmics 14(1), 1–2 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Uyen, N.T., Nguyen, G.L., Pham, C.V., Sang, T.X., Viet, H.H. (2023). A Heuristic Algorithm for Student-Project Allocation Problem. In: Dinh, T.N., Li, M. (eds) Computational Data and Social Networks . CSoNet 2022. Lecture Notes in Computer Science, vol 13831. Springer, Cham. https://doi.org/10.1007/978-3-031-26303-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-26303-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26302-6
Online ISBN: 978-3-031-26303-3
eBook Packages: Computer ScienceComputer Science (R0)