Skip to main content

Link Prediction of Complex Networks Based on Local Path and Closeness Centrality

  • Conference paper
  • First Online:
Computational Data and Social Networks (CSoNet 2022)

Abstract

Due to evolving nature of complex network, link prediction plays a crucial role in exploring likelihood of new relationships among nodes. There exist a great number of techniques to apply the similarity-based metrics for estimating proximity of vertices in the network. In this work, a novel similarity-based metric based on local path and closeness centrality is proposed, and the Local Path and Centrality based Parameterized Algorithm (LPCPA) is suggested. The proposed method is a new variant of the well-known index of Common Neighbor and Centrality based Parameterized Algorithm (CCPA). Extensive experiments are conducted on thirteen real networks originating from diverse domains. The experimental results indicate that the proposed index improves the prediction accuracy measured by AUC and has achieved a competitive result on Precision compared to the existing state-of-the-art link prediction methods.

Supported by the National Natural Science Foundation of China (Nos. 61977016 and 61572010), Natural Science Foundation of Fujian Province (Nos. 2020J01164, 2017J01738) and Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province (No. JAT191119).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y.B., et al.: Predicting protein-protein interactions from protein sequences by a stacked sparse autoencoder deep neural network. Mol. BioSyst. 13(7), 1336–1344 (2017)

    Article  Google Scholar 

  2. Liu, S., Dong, Z., Ding, C., Wang, T., Zhang, Y.: Do you need cobalt ore? Estimating potential trade relations through link prediction. Resour. Policy 66, 101632 (2020)

    Article  Google Scholar 

  3. Lü, L., Medo, M., Yeung, C.H., Zhang, Y.-C., Zhang, Z.-K., Zhou, T.: Recommender systems. Phys. Rep. 519(1), 1–49 (2012)

    Article  Google Scholar 

  4. Aziz, F., Gul, H., Uddin, I., Gkoutos, G.V.: Path-based extensions of local link prediction methods for complex networks. Sci. Rep. 10, 19848 (2020)

    Article  Google Scholar 

  5. Das, S., Das, S.K.: A probabilistic link prediction model in time-varying social networks. In: IEEE International Conference on Communications(ICC), pp. 1–6. IEEE (2017). https://doi.org/10.1109/ICC.2017.7996909

  6. Pan, L., Zhou, T., Lü, L., Hu, C.-K.: Predicting missing links and identifying spurious links via likelihood analysis. Sci. Rep. 6, 22955 (2016)

    Article  Google Scholar 

  7. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2016), pp. 855–864 ACM (2016). https://doi.org/10.1145/2939672.2939754

  8. Chen, G.-F., Xu, C., Wang, J.-Y., Feng, J.-W., Feng, J.-Q.: Graph regularization weighted nonnegative matrix factorization for link prediction in weighted complex network. Neurocomputing 369, 50–60 (2019)

    Article  Google Scholar 

  9. Chen, B.L., Chen, L., Li, B.: A fast algorithm for predicting links to nodes of interest. Inf. Sci. 329, 552–567 (2016)

    Article  Google Scholar 

  10. Newman, M.E.J.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2), 025102 (2001)

    Google Scholar 

  11. Jaccard, P.: Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Societe Vaudoise des Sciences Naturelles 37(140), 241–272 (1901)

    Google Scholar 

  12. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  13. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71(4), 623–630 (2009)

    Article  MATH  Google Scholar 

  14. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Phys. A 311, 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leicht, E.A., Holme, P., Newman, M.E.J.: Vertex similarity in networks. Phys. Rev. E 73, 026120 (2006)

    Article  Google Scholar 

  16. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw Hill Inc, New York, NY, USA (1986)

    MATH  Google Scholar 

  17. Sørensen, T.: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5(4), 1–34 (1948)

    Google Scholar 

  18. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.-L.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551–1555 (2002)

    Article  Google Scholar 

  19. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  20. Lü, L., Jin, C.-H., Zhou, T.: Similarity index based on local paths for link prediction of complex networks. Phys. Rev. E 80, 046122 (2009)

    Article  Google Scholar 

  21. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Phys. A 390, 1150–1170 (2011)

    Article  Google Scholar 

  22. Pech, R., Hao, D., Lee, Y.-L., Yuan, Y., Zhou, T.: Link prediction via linear optimization. Phys. A 528, 121319 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, T., Lee, Y.-L., Wang, G.-N.: Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms. Phys. A 564, 125532 (2021)

    Article  Google Scholar 

  24. Ahmad, I., Akhtar, M.U., Noor, S., Shahnaz, A.: Missing link prediction using common neighbor and centrality based parameterized algorithm. Sci. Rep. 10, 364 (2020)

    Article  Google Scholar 

  25. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst. 22(1), 5–53 (2004)

    Article  Google Scholar 

  26. Zachary, W.W.: An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33(4), 452–473 (1977)

    Article  Google Scholar 

  27. Lusseau, D., Schneider, K., Boisseau, O.J., et al.: The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behav. Ecol. Sociobiol. 54(4), 396–405 (2003)

    Article  Google Scholar 

  28. Knuth, D.E.: The stanford GraphBase: a platform for combinatorial algorithms. In: The Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 41–43. Philadelphia, PA, USA (1993)

    Google Scholar 

  29. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  30. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006)

    Google Scholar 

  31. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Coleman, J., Katz, E., Menzel, H.: The diffusion of an innovation among physicians. Sociometry 20(4), 253–270 (1957)

    Article  Google Scholar 

  33. Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(4), 565–573 (2003)

    Article  Google Scholar 

  34. White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans. Philos. Trans. R. Soc. Lond. 314(1165), 1–340 (1986)

    Google Scholar 

  35. Batagelj, V., Mrvar, A.: Pajek. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 1245–1256. Springer, New York, NY (2014). https://doi.org/10.1007/978-1-4614-6170-8_310

  36. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103 (2003)

    Google Scholar 

  37. Batagelj, V., Mrvar, A., Pajek datasets. https://vlado.fmf.uni-lj.si/pub/networks/data/

Download references

Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (Nos. 61977016 and 61572010), Natural Science Foundation of Fujian Province (Nos. 2020J01164, 2017J01738) and Education and Scientific Research Project for Young and Middle-aged Teachers of Fujian Province (No. JAT191119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Zhou, S., Chen, G. (2023). Link Prediction of Complex Networks Based on Local Path and Closeness Centrality. In: Dinh, T.N., Li, M. (eds) Computational Data and Social Networks . CSoNet 2022. Lecture Notes in Computer Science, vol 13831. Springer, Cham. https://doi.org/10.1007/978-3-031-26303-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26303-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26302-6

  • Online ISBN: 978-3-031-26303-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics