Abstract
Under-display camera (UDC) provides an elegant solution for full-screen smartphones. However, UDC captured images suffer from severe degradation since sensors lie under the display. Although this issue can be tackled by image restoration networks, these networks require large-scale image pairs for training. To this end, we propose a modular network dubbed MPGNet trained using the generative adversarial network (GAN) framework for simulating UDC imaging. Specifically, we note that the UDC imaging degradation process contains brightness attenuation, blurring, and noise corruption. Thus we model each degradation with a characteristic-related modular network, and all modular networks are cascaded to form the generator. Together with a pixel-wise discriminator and supervised loss, we can train the generator to simulate the UDC imaging degradation process. Furthermore, we present a Transformer-style network named DWFormer for UDC image restoration. For practical purposes, we use depth-wise convolution instead of the multi-head self-attention to aggregate local spatial information. Moreover, we propose a novel channel attention module to aggregate global information, which is critical for brightness recovery. We conduct evaluations on the UDC benchmark, and our method surpasses the previous state-of-the-art models by 1.23 dB on the P-OLED track and 0.71 dB on the T-OLED track, respectively. Code is available at Github.
Y. Zhou and Y. Song—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhou, Y., Ren, D., Emerton, N., Lim, S., Large, T.: Image restoration for under-display camera. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9179–9188 (2021)
Heath, M.T.: Scientific Computing: An Introductory Survey, Revised 2nd edn. SIAM (2018)
Nayar, S.K., Narasimhan, S.G.: Vision in bad weather. In: Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 820–827. IEEE (1999)
Kwon, K., et al.: Controllable image restoration for under-display camera in smartphones. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2073–2082 (2021)
Hasinoff, S.W.: Photon, poisson noise (2014)
Kersting, K., Plagemann, C., Pfaff, P., Burgard, W.: Most likely heteroscedastic Gaussian process regression. In: Proceedings of the 24th International Conference on Machine Learning, pp. 393–400 (2007)
Panikkasseril Sethumadhavan, H., Puthussery, D., Kuriakose, M., Charangatt Victor, J.: Transform domain pyramidal dilated convolution networks for restoration of under display camera images. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 364–378. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_28
Sundar, V., Hegde, S., Kothandaraman, D., Mitra, K.: Deep atrous guided filter for image restoration in under display cameras. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 379–397. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_29
Nie, S., et al.: A dual residual network with channel attention for image restoration. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 352–363. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_27
Feng, R., Li, C., Chen, H., Li, S., Loy, C.C., Gu, J.: Removing diffraction image artifacts in under-display camera via dynamic skip connection network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 662–671 (2021)
Chen, J., Chen, J., Chao, H., Yang, M.: Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3155–3164 (2018)
Chang, K.-C., et al.: Learning camera-aware noise models. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_21
Kim, D.W., Ryun Chung, J., Jung, S.W.: GRDN: grouped residual dense network for real image denoising and GAN-based real-world noise modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Yu, W., et al.: MetaFormer is actually what you need for vision. arXiv preprint arXiv:2111.11418 (2021)
Kwon, H.J., Yang, C.M., Kim, M.C., Kim, C.W., Ahn, J.Y., Kim, P.R.: Modeling of luminance transition curve of transparent plastics on transparent OLED displays. Electron. Imaging 2016, 1–4 (2016)
Qin, Z., Yeh, Y.-W., Tsai, Y.H., Cheng, W.-Y., Huang, Y.-P., Shieh, H.P.D.: See-through image blurring of transparent OLED display: diffraction analysis and OLED pixel optimization. In: SID International Symposium: Digest of Technology Papers, vol. 47, pp. 393–396 (2016)
Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 98, 168–186 (2012)
Gupta, A., Joshi, N., Lawrence Zitnick, C., Cohen, M., Curless, B.: Single image deblurring using motion density functions. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 171–184. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_13
Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)
Xu, L., Ren, J.S., Liu, C., Jia, J.: Deep convolutional neural network for image deconvolution. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14
Foi, A., Trimeche, M., Katkovnik, V., Egiazarian, K.: Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data. IEEE Trans. Image Process. 17, 1737–1754 (2008)
Hasinoff, S.W., Durand, F., Freeman, W.T.: Noise-optimal capture for high dynamic range photography. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 553–560. IEEE (2010)
Guo, S., Yan, Z., Zhang, K., Zuo, W., Zhang, L.: Toward convolutional blind denoising of real photographs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1712–1722 (2019)
Wei, K., Fu, Y., Yang, J., Huang, H.: A physics-based noise formation model for extreme low-light raw denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2758–2767 (2020)
Zhang, Y., Qin, H., Wang, X., Li, H.: Rethinking noise synthesis and modeling in raw denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4593–4601 (2021)
Hong, Z., Fan, X., Jiang, T., Feng, J.: End-to-end unpaired image denoising with conditional adversarial networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 4140–4149 (2020)
Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising. IEEE Trans. Image Process. 26, 3142–3155 (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Dong, H., Yu, S., Wu, C., Guo, Y.: Semantic image synthesis via adversarial learning. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5706–5714 (2017)
Kaneko, T., Hiramatsu, K., Kashino, K.: Generative attribute controller with conditional filtered generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6089–6098 (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4681–4690 (2017)
Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2536–2544 (2016)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Lim, J.H., Ye, J.C.: Geometric GAN. arXiv preprint arXiv:1705.02894 (2017)
Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)
Yue, Z., Zhao, Q., Zhang, L., Meng, D.: Dual adversarial network: toward real-world noise removal and noise generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 41–58. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_3
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
Kupyn, O., Martyniuk, T., Wu, J., Wang, Z.: DeblurGAN-v2: deblurring (orders-of-magnitude) faster and better. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8878–8887 (2019)
Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)
Xia, Z., Gharbi, M., Perazzi, F., Sunkavalli, K., Chakrabarti, A.: Deep denoising of flash and no-flash pairs for photography in low-light environments. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2063–2072 (2021)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Chen, H., et al.: Pre-trained image processing transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12299–12310 (2021)
Wang, Z., Cun, X., Bao, J., Liu, J.: UFormer: a general U-shaped transformer for image restoration. arXiv preprint arXiv:2106.03106 (2021)
Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)
Wu, Y., Johnson, J.: Rethinking “batch” in batchnorm. arXiv preprint arXiv:2105.07576 (2021)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Schonfeld, E., Schiele, B., Khoreva, A.: A U-net based discriminator for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8207–8216 (2020)
Li, D., Zhang, H., Wang, Y.: Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem. Soc. Rev. 42, 8416–8433 (2013)
Fu, Q., Di, X., Zhang, Y.: Learning an adaptive model for extreme low-light raw image processing. arXiv preprint arXiv:2004.10447 (2020)
Voelz, D.G.: Computational Fourier Optics: a MATLAB Tutorial. SPIE Press Bellingham (2011)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Jang, G., Lee, W., Son, S., Lee, K.M.: C2N: practical generative noise modeling for real-world denoising. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2350–2359 (2021)
Monakhova, K., Richter, S.R., Waller, L., Koltun, V.: Dancing under the stars: video denoising in starlight. arXiv preprint arXiv:2204.04210 (2022)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Cai, Y., Hu, X., Wang, H., Zhang, Y., Pfister, H., Wei, D.: Learning to generate realistic noisy images via pixel-level noise-aware adversarial training. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 126–135 (2017)
Zhou, Y., et al.: UDC 2020 challenge on image restoration of under-display camera: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 337–351. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_26
Yang, Q., Liu, Y., Tang, J., Ku, T.: Residual and dense UNet for under-display camera restoration. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12539, pp. 398–408. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68238-5_30
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, Y., Song, Y., Du, X. (2023). Modular Degradation Simulation and Restoration for Under-Display Camera. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-26313-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26312-5
Online ISBN: 978-3-031-26313-2
eBook Packages: Computer ScienceComputer Science (R0)