Skip to main content

CSIE: Coded Strip-Patterns Image Enhancement Embedded in Structured Light-Based Methods

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 944 Accesses

Abstract

When a coded strip-patterns image (CSI) is captured in a structured light system (SLs), it often suffers from low visibility at low exposure settings. Besides degrading the visual perception of the CSI, this poor quality also significantly affects the performance of 3D model reconstruction. Most of the existing image-enhanced methods, however, focus on processing natural images but not CSI. In this paper, we propose a novel and effective CSI enhancement (CSIE) method designed for SLs. More concretely, a bidirectional perceptual consistency (BPC) criterion, including relative grayscale (RG), exposure, and texture level priors, is first introduced to ensure visual consistency before and after enhancement. Then, constrained by BPC, the optimization function estimates solutions of illumination with piecewise smoothness and reflectance with detail preservation. With well-refined solutions, CSIE results can be achieved accordingly and further improve the details performance of 3D model reconstruction. Experiments on multiple sets of challenging CSI sequences show that our CSIE outperforms the existing used for natural image-enhanced methods in terms of 2D enhancement, point clouds extraction (at least 17% improvement), and 3D model reconstruction.

W. Cao and Y. Ye—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Chae, O.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)

    Article  Google Scholar 

  2. Cai, B., Xu, X., Guo, K., Jia, K., Hu, B., Tao, D.: A joint intrinsic-extrinsic prior model for retinex. In: IEEE International Conference on Computer Vision, pp. 4000–4009 (2017)

    Google Scholar 

  3. Cao, W., Wu, S., Wu, J., Liu, Z., Li, Y.: Edge/structure-preserving texture filter via relative bilateral filtering with a conditional constraint. IEEE Signal Process. Lett. 28, 1535–1539 (2021)

    Article  Google Scholar 

  4. Celik, T., Tjahjadi, T.: Contextual and variational contrast enhancement. IEEE Trans. Image Process. 20(12), 3431–3441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  6. Cho, H., Kim, S.W.: Mobile robot localization using biased chirp-spread-spectrum ranging. IEEE Trans. Industr. Electron. 57(8), 2826–2835 (2009)

    Google Scholar 

  7. Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Trans. Image Process. 24(12), 4965–4977 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fu, X., Zeng, D., Huang, Y., Zhang, X.P., Ding, X.: A weighted variational model for simultaneous reflectance and illumination estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2782–2790 (2016)

    Google Scholar 

  9. Grosse, R., Johnson, M.K., Adelson, E.H., Freeman, W.T.: Ground truth dataset and baseline evaluations for intrinsic image algorithms. In: IEEE International Conference on Computer Vision, pp. 2335–2342 (2009)

    Google Scholar 

  10. Guo, X., Li, Y., Ling, H.: LIME: low-light image enhancement via illumination map estimation. IEEE Trans. Image Process. 26(2), 982–993 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hao, S., Han, X., Guo, Y., Xu, X., Wang, M.: Low-light image enhancement with semi-decoupled decomposition. IEEE Trans. Multimedia 1(1), 1–14 (2020)

    Article  Google Scholar 

  12. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)

    Google Scholar 

  13. Van der Jeught, S., Dirckx, J.J.: Real-time structured light profilometry: a review. Opt. Lasers Eng. 87, 18–31 (2016)

    Article  Google Scholar 

  14. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Google Scholar 

  15. Jobson, D.J., Rahman, Z.u., Woodell, G.A.: Properties and performance of a center/surround retinex. IEEE Trans. Image process. 6(3), 451–462 (1997)

    Google Scholar 

  16. Krishnan, D., Fattal, R., Szeliski, R.: Efficient preconditioning of Laplacian matrices for computer graphics. ACM Trans. Graph. 32(4), 1–15 (2013)

    Article  MATH  Google Scholar 

  17. Li, Z., Zheng, J., Zhu, Z., Yao, W., Wu, S.: Weighted guided image filtering. IEEE Trans. Image Process. 24(1), 120–129 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Liu, Z., Yin, Y., Wu, Q., Li, X., Zhang, G.: On-site calibration method for outdoor binocular stereo vision sensors. Opt. Lasers Eng. 86, 75–82 (2016)

    Article  Google Scholar 

  19. Lore, K.G., Akintayo, A., Sarkar, S.: LLNet: a deep autoencoder approach to natural low-light image enhancement. Pattern Recogn. 61, 650–662 (2017)

    Article  Google Scholar 

  20. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.N.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 23(12), 5638–5653 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pisano, E.D., et al.: Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. J. Digit. Imaging 11(4), 193–200 (1998)

    Article  Google Scholar 

  22. Ren, X., Li, M., Cheng, W.H., Liu, J.: Joint enhancement and denoising method via sequential decomposition. In: IEEE International Symposium on Circuits and Systems, pp. 1–5 (2018)

    Google Scholar 

  23. Rother, C., Kiefel, M., Zhang, L., Schölkopf, B., Gehler, P.: Recovering intrinsic images with a global sparsity prior on reflectance. In: Advances in Neural Information Processing Systems 24 (2011)

    Google Scholar 

  24. Song, Z., Chung, R., Zhang, X.T.: An accurate and robust strip-edge-based structured light means for shiny surface micromeasurement in 3-D. IEEE Trans. Industr. Electron. 60(3), 1023–1032 (2012)

    Article  Google Scholar 

  25. Song, Z., Jiang, H., Lin, H., Tang, S.: A high dynamic range structured light means for the 3D measurement of specular surface. Opt. Lasers Eng. 95, 8–16 (2017)

    Article  Google Scholar 

  26. Sun, Q., Chen, J., Li, C.: A robust method to extract a laser stripe centre based on grey level moment. Opt. Lasers Eng. 67, 122–127 (2015)

    Article  Google Scholar 

  27. Tseng, P.: Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl. 109(3), 475–494 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J., et al.: Star: a structure and texture aware Retinex model. IEEE Trans. Image Process. 29(1), 5022–5037 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, L., Zheng, S., Jia, J.: Unnatural \(l_0\) sparse representation for natural image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013)

    Google Scholar 

  30. Zhan, K., Shi, J., Teng, J., Li, Q., Wang, M., Lu, F.: Linking synaptic computation for image enhancement. Neurocomputing 238, 1–12 (2017)

    Article  Google Scholar 

  31. Zhan, K., Teng, J., Shi, J., Li, Q., Wang, M.: Feature-linking model for image enhancement. Neural Comput. 28(6), 1072–1100 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, Q., Yuan, G., Xiao, C., Zhu, L., Zheng, W.S.: High-quality exposure correction of underexposed photos. In: ACM International Conference on Multimedia, pp. 582–590 (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Key-Area Research and Development Program of Guangdong Province, China (2019B010149002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhan Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, W., Ye, Y., Shi, C., Song, Z. (2023). CSIE: Coded Strip-Patterns Image Enhancement Embedded in Structured Light-Based Methods. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics