Skip to main content

Efficient Hardware-Aware Neural Architecture Search for Image Super-Resolution on Mobile Devices

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 952 Accesses

Abstract

With the ubiquitous use of mobile devices in our daily life, how to design a lightweight network for high-performance image super-resolution (SR) has become increasingly important. However, it is difficult and laborious to manually design and deploy different SR models on different mobile devices, while the existing network architecture search (NAS) techniques are expensive and unfriendly to find the desired SR networks for various hardware platforms. To mitigate these issues, we propose an efficient hardware-aware neural architecture search (EHANAS) method for SR on mobile devices. First, EHANAS supports searching in a large network architecture space, including the macro topology (e.g., number of blocks) and microstructure (e.g., kernel type, channel dimension, and activation type) of the network. By introducing a spatial and channel masking strategy and a re-parameterization technique, we are able to finish the whole searching procedure using one single GPU card within one day. Second, the hardware latency is taken as a direct constraint on the searching process, enabling hardware-adaptive optimization of the searched SR model. Experiments on two typical mobile devices demonstrate the effectiveness of the proposed EHANAS method, where the searched SR models obtain better performance than previously manually designed and automatically searched models. The source codes of EHANAS can be found at https://github.com/xindongzhang/EHANAS.

X. Zhang and H. Zeng—Equal contribution.

L. Zhang—This work is supported by the Hong Kong RGC RIF grant (R5001-18) and the PolyU-OPPO Joint Innovation Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We do not consider those more complicated operators such as splitting, skip connection, and attention for block search since they are not friendly for resource-limited mobile devices [49].

  2. 2.

    The DL-based latency prediction model [12, 48] can be also easily integrated into our framework, while we use pre-calculated LUT in this work for the purpose of straight latency comparison [49] and simplicity.

References

  1. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 252–268 (2018)

    Google Scholar 

  2. Baker, B., Gupta, O., Naik, N., Raskar, R.: Designing neural network architectures using reinforcement learning. arXiv preprint arXiv:1611.02167 (2016)

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  4. Chu, X., Zhang, B., Ma, H., Xu, R., Li, Q.: Fast, accurate and lightweight super-resolution with neural architecture search. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 59–64. IEEE (2021)

    Google Scholar 

  5. Chu, X., Zhang, B., Xu, R.: Multi-objective reinforced evolution in mobile neural architecture search. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12538, pp. 99–113. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66823-5_6

    Chapter  Google Scholar 

  6. Dai, T., Cai, J., Zhang, Y., Xia, S.T., Zhang, L.: Second-order attention network for single image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11065–11074 (2019)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2015)

    Article  Google Scholar 

  8. Dong, C., Loy, C.C., Tang, X.: Accelerating the super-resolution convolutional neural network. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 391–407. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_25

    Chapter  Google Scholar 

  9. Dong, P., et al.: RTMobile: beyond real-time mobile acceleration of RNNs for speech recognition. In: 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1–6. IEEE (2020)

    Google Scholar 

  10. Dong, X., Yang, Y.: Searching for a robust neural architecture in four GPU hours. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1761–1770 (2019)

    Google Scholar 

  11. Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 853–862 (2022)

    Google Scholar 

  12. Gao, Y., Gu, X., Zhang, H., Lin, H., Yang, M.: Runtime performance prediction for deep learning models with graph neural network. Technical report, MSR-TR-2021-3. Microsoft (2021)

    Google Scholar 

  13. Gong, Y., et al.: A privacy-preserving-oriented DNN pruning and mobile acceleration framework. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI, pp. 119–124 (2020)

    Google Scholar 

  14. Guo, Y., Luo, Y., He, Z., Huang, J., Chen, J.: Hierarchical neural architecture search for single image super-resolution. IEEE Signal Process. Lett. 27, 1255–1259 (2020)

    Article  Google Scholar 

  15. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5197–5206 (2015)

    Google Scholar 

  16. Hui, Z., Gao, X., Yang, Y., Wang, X.: Lightweight image super-resolution with information multi-distillation network. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 2024–2032 (2019)

    Google Scholar 

  17. Hui, Z., Wang, X., Gao, X.: Fast and accurate single image super-resolution via information distillation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 723–731 (2018)

    Google Scholar 

  18. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144 (2016)

  19. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  20. Kong, F., et al.: Residual local feature network for efficient super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 766–776 (2022)

    Google Scholar 

  21. Lai, W.S., Huang, J.B., Ahuja, N., Yang, M.H.: Deep laplacian pyramid networks for fast and accurate super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 624–632 (2017)

    Google Scholar 

  22. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  23. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  24. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  25. Li, Y., Gu, S., Zhang, K., Van Gool, L., Timofte, R.: DHP: differentiable meta pruning via hypernetworks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 608–624. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_36

    Chapter  Google Scholar 

  26. Li, Y., et al.: Ntire 2022 challenge on efficient super-resolution: methods and results. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1062–1102 (2022)

    Google Scholar 

  27. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops, pp. 136–144 (2017)

    Google Scholar 

  28. Liu, H., Simonyan, K., Vinyals, O., Fernando, C., Kavukcuoglu, K.: Hierarchical representations for efficient architecture search. arXiv preprint arXiv:1711.00436 (2017)

  29. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 41–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_2

    Chapter  Google Scholar 

  30. Ma, X., ET AL.: PCONV: the missing but desirable sparsity in DNN weight pruning for real-time execution on mobile devices. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5117–5124 (2020)

    Google Scholar 

  31. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  32. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  33. Niu, W., et al.: PatDNN: achieving real-time DNN execution on mobile devices with pattern-based weight pruning. In: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 907–922 (2020)

    Google Scholar 

  34. Radosavovic, I., Kosaraju, R.P., Girshick, R., He, K., Dollár, P.: Designing network design spaces. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10428–10436 (2020)

    Google Scholar 

  35. Real, E., Aggarwal, A., Huang, Y., Le, Q.V.: Regularized evolution for image classifier architecture search. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4780–4789 (2019)

    Google Scholar 

  36. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  37. Song, D., Xu, C., Jia, X., Chen, Y., Xu, C., Wang, Y.: Efficient residual dense block search for image super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12007–12014 (2020)

    Google Scholar 

  38. Stamoulis, D., et al.: Single-path nas: Device-aware efficient convnet design. arXiv preprint arXiv:1905.04159 (2019)

  39. Timofte, R., Agustsson, E., Van Gool, L., Yang, M.H., Zhang, L.: NTIRE 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp. 114–125 (2017)

    Google Scholar 

  40. Vu, T., Van Nguyen, C., Pham, T.X., Luu, T.M., Yoo, C.D.: Fast and efficient image quality enhancement via desubpixel convolutional neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)

    Google Scholar 

  41. Wan, A., et al.: Fbnetv2: differentiable neural architecture search for spatial and channel dimensions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12965–12974 (2020)

    Google Scholar 

  42. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4917–4926 (2021)

    Google Scholar 

  43. Wu, B., et al.: FBNet: hardware-aware efficient convnet design via differentiable neural architecture search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10734–10742 (2019)

    Google Scholar 

  44. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  45. Zhan, Z., et al.: Achieving on-mobile real-time super-resolution with neural architecture and pruning search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4821–4831 (2021)

    Google Scholar 

  46. Zhang, K., et al.: AIM 2020 challenge on efficient super-resolution: methods and results. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 5–40. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_1

    Chapter  Google Scholar 

  47. Zhang, K., et al.: Aim 2019 challenge on constrained super-resolution: methods and results. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3565–3574. IEEE (2019)

    Google Scholar 

  48. Zhang, L.L., et al.: Nn-meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices. In: Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, pp. 81–93 (2021)

    Google Scholar 

  49. Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super resolution on mobile devices. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4034–4043 (2021)

    Google Scholar 

  50. Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution using very deep residual channel attention networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 286–301 (2018)

    Google Scholar 

  51. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv preprint arXiv:1611.01578 (2016)

  52. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zeng, H., Zhang, L. (2023). Efficient Hardware-Aware Neural Architecture Search for Image Super-Resolution on Mobile Devices. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics