Skip to main content

Towards Real-Time High-Definition Image Snow Removal: Efficient Pyramid Network with Asymmetrical Encoder-Decoder Architecture

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13843))

Included in the following conference series:

  • 958 Accesses

Abstract

In winter scenes, the degradation of images taken under snow can be pretty complex, where the spatial distribution of snowy degradation varies from image to image. Recent methods adopt deep neural networks to recover clean scenes from snowy images directly. However, due to the paradox caused by the variation of complex snowy degradation, achieving reliable High-Definition image desnowing performance in real time is a considerable challenge. We develop a novel Efficient Pyramid Network with asymmetrical encoder-decoder architecture for real-time HD image desnowing. The general idea of our proposed network is to utilize the multi-scale feature flow fully and implicitly to mine clean cues from features. Compared with previous state-of-the-art desnowing methods, our approach achieves a better complexity-performance trade-off and effectively handles the processing difficulties of HD and Ultra-HD images.

The extensive experiments on three large-scale image desnowing datasets demonstrate that our method surpasses all state-of-the-art approaches by a large margin both quantitatively and qualitatively, boosting the PSNR metric from 31.76 dB to 34.10 dB on the CSD test dataset and from 28.29 dB to 30.87 dB on the SRRS test dataset. The source code is available at https://github.com/Owen718/Towards-Real-time-High-Definition-Image-Snow-Removal-Efficient-Pyramid-Network.

T. Ye, S. Chen and Y. Liu—Equal contribution.

This work was supported by Natural Science Foundation of Chongqing, China (Grant No. cstc2020jcyj-msxmX0324), the project of science and technology research program of Chongqing Education Commission of China (Grant No. KJQN202200206), Natural Science Foundation of Fujian Province (Grant No. 2021J01867), the Education Department of Fujian Province (Grant No. JAT190301) and Foundation of Jimei University (Grant No. ZP2020034).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: Proceedings of 1st International Conference on Image Processing, vol. 2, pp. 168–172. IEEE (1994)

    Google Scholar 

  2. Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. arXiv preprint arXiv:2204.04676 (2022)

  3. Chen, W.-T., Fang, H.-Y., Ding, J.-J., Tsai, C.-C., Kuo, S.-Y.: JSTASR: joint size and transparency-aware snow removal algorithm based on modified partial convolution and veiling effect removal. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 754–770. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_45

    Chapter  Google Scholar 

  4. Chen, W.T., et al.: All snow removed: single image desnowing algorithm using hierarchical dual-tree complex wavelet representation and contradict channel loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4196–4205 (2021)

    Google Scholar 

  5. Engin, D., Genç, A., Kemal Ekenel, H.: Cycle-dehaze: enhanced cyclegan for single image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 825–833 (2018)

    Google Scholar 

  6. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13713–13722 (2021)

    Google Scholar 

  7. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  8. Huang, X., Ge, Z., Jie, Z., Yoshie, O.: NMS by representative region: towards crowded pedestrian detection by proposal pairing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10750–10759 (2020)

    Google Scholar 

  9. Lan, M., Zhang, Y., Zhang, L., Du, B.: Global context based automatic road segmentation via dilated convolutional neural network. Inf. Sci. 535, 156–171 (2020)

    Article  MathSciNet  Google Scholar 

  10. Li, R., Tan, R.T., Cheong, L.F.: All in one bad weather removal using architectural search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3175–3185 (2020)

    Google Scholar 

  11. Liu, Y.F., Jaw, D.W., Huang, S.C., Hwang, J.N.: Desnownet: context-aware deep network for snow removal. IEEE Trans. Image Process. 27(6), 3064–3073 (2018)

    Article  MathSciNet  Google Scholar 

  12. Ouyang, W., Wang, X.: Joint deep learning for pedestrian detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2056–2063 (2013)

    Google Scholar 

  13. Qin, X., Wang, Z., Bai, Y., Xie, X., Jia, H.: FFA-Net: feature fusion attention network for single image dehazing. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11908–11915 (2020)

    Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  15. Shafiee, M.J., Chywl, B., Li, F., Wong, A.: Fast yolo: a fast you only look once system for real-time embedded object detection in video. arXiv preprint arXiv:1709.05943 (2017)

  16. Szegedy, C., Toshev, A., Erhan, D.: Deep neural networks for object detection. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  17. Valanarasu, J.M.J., Yasarla, R., Patel, V.M.: Transweather: transformer-based restoration of images degraded by adverse weather conditions. arXiv preprint arXiv:2111.14813 (2021)

  18. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–19 (2018)

    Google Scholar 

  19. Wu, H., et al.: Contrastive learning for compact single image dehazing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10551–10560 (2021)

    Google Scholar 

  20. Zheng, X., Liao, Y., Guo, W., Fu, X., Ding, X.: Single-image-based rain and snow removal using multi-guided filter. In: Lee, M., Hirose, A., Hou, Z.-G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8228, pp. 258–265. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42051-1_33

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, T., Chen, S., Liu, Y., Ye, Y., Bai, J., Chen, E. (2023). Towards Real-Time High-Definition Image Snow Removal: Efficient Pyramid Network with Asymmetrical Encoder-Decoder Architecture. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26313-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26312-5

  • Online ISBN: 978-3-031-26313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics