Abstract
Existing thin cloud removal methods treat this image restoration task as a point estimation problem, and produce a single cloud-free image following a deterministic pipeline. In this paper, we propose a novel thin cloud removal network via Conditional Variational Autoencoders (CVAE) to generate multiple reasonable cloud-free images for each input cloud image. We analyze the image degradation process with a probabilistic graphical model and design the network in an encoder-decoder fashion. Since the diversity in sampling from the latent space, the proposed method can avoid the shortcoming caused by the inaccuracy of a single estimation. With the uncertainty analysis, we can generate a more accurate clear image based on these multiple predictions. Furthermore, we create a new benchmark dataset with cloud and clear image pairs from real-world scenes, overcoming the problem of poor generalization performance caused by training on synthetic datasets. Quantitative and qualitative experiments show that the proposed method significantly outperforms state-of-the-art methods on real-world cloud images. The source code and dataset are available at https://github.com/haidong-Ding/Cloud-Removal.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, B., et al.: Benchmarking single-image dehazing and beyond. IEEE Trans. Image Process. 28(1), 492–505 (2018)
Zhang, Z., Zhao, L., Liu, Y., Zhang, S., Yang, J.: Unified density-aware image dehazing and object detection in real-world hazy scenes. In: Proceedings of the Asian Conference on Computer Vision (2020)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: End-to-end united video dehazing and detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Tu, Z., Chen, X., Yuille, A.L., Zhu, S.C.: Image parsing: unifying segmentation, detection, and recognition. Int. J. Comput. Vis. 63(2), 113–140 (2005)
Tarel, J.P., Hautiere, N., Cord, A., Gruyer, D., Halmaoui, H.: Improved visibility of road scene images under heterogeneous fog. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 478–485. IEEE (2010)
Sakaridis, C., Dai, D., Van Gool, L.: Semantic foggy scene understanding with synthetic data. Int. J. Comput. Vis. 126(9), 973–992 (2018)
Richter, R.: A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 17(6), 1201–1214 (1996)
Vermote, E.F., Tanré, D., Deuze, J.L., Herman, M., Morcette, J.J.: Second simulation of the satellite signal in the solar spectrum, 6s: an overview. IEEE Trans. Geosci. Remote Sens. 35(3), 675–686 (1997)
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Xu, M., Deng, F., Jia, S., Jia, X., Plaza, A.J.: Attention mechanism-based generative adversarial networks for cloud removal in landsat images. Remote Sens. Environ. 271, 112902 (2022)
Li, W., Li, Y., Chen, D., Chan, J.C.W.: Thin cloud removal with residual symmetrical concatenation network. ISPRS J. Photogramm. Remote. Sens. 153, 137–150 (2019)
Zhou, Y., Jing, W., Wang, J., Chen, G., Scherer, R., Damaševičius, R.: MSAR-DefogNet: lightweight cloud removal network for high resolution remote sensing images based on multi scale convolution. IET Image Proc. 16(3), 659–668 (2022)
Zi, Y., Xie, F., Zhang, N., Jiang, Z., Zhu, W., Zhang, H.: Thin cloud removal for multispectral remote sensing images using convolutional neural networks combined with an imaging model. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 14, 3811–3823 (2021)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)
Qin, M., Xie, F., Li, W., Shi, Z., Zhang, H.: Dehazing for multispectral remote sensing images based on a convolutional neural network with the residual architecture. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 11(5), 1645–1655 (2018)
Zheng, J., Liu, X.Y., Wang, X.: Single image cloud removal using U-net and generative adversarial networks. IEEE Trans. Geosci. Remote Sens. 59(8), 6371–6385 (2020)
Chavez, P.S., Jr.: An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 24(3), 459–479 (1988)
Fattal, R.: Dehazing using color-lines. ACM Trans. Graph. (TOG) 34(1), 1–14 (2014)
Berman, D., Avidan, S., et al.: Non-local image dehazing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)
Xu, M., Pickering, M., Plaza, A.J., Jia, X.: Thin cloud removal based on signal transmission principles and spectral mixture analysis. IEEE Trans. Geosci. Remote Sens. 54(3), 1659–1669 (2015)
Mao, X., Shen, C., Yang, Y.B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Singh, P., Komodakis, N.: Cloud-GAN: cloud removal for sentinel-2 imagery using a cyclic consistent generative adversarial networks. In: 2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018, pp. 1772–1775. IEEE (2018)
Ren, W., Liu, S., Zhang, H., Pan, J., Cao, X., Yang, M.-H.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Makarau, A., Richter, R., Müller, R., Reinartz, P.: Haze detection and removal in remotely sensed multispectral imagery. IEEE Trans. Geosci. Remote Sens. 52(9), 5895–5905 (2014)
Narasimhan, S.G., Nayar, S.K.: Vision and the atmosphere. Int. J. Comput. Vis. 48(3), 233–254 (2002)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)
Pan, H.: Cloud removal for remote sensing imagery via spatial attention generative adversarial network. arXiv preprint arXiv:2009.13015 (2020)
Zhang, X., Wang, T., Wang, J., Tang, G., Zhao, L.: Pyramid channel-based feature attention network for image dehazing. Comput. Vis. Image Underst. 197, 103003 (2020)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Yu, W., Zhang, X., Pun, M.O., Liu, M.: A hybrid model-based and data-driven approach for cloud removal in satellite imagery using multi-scale distortion-aware networks. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 7160–7163. IEEE (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Signal Process. Lett. 20(3), 209–212 (2012)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Acknowledgements
This work was supported in part by the National Key Research and Development Program of China under Grant 2019YFC1510905 and in part by the National Natural Science Foundation of China under Grant 61871011.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, H., Zi, Y., Xie, F. (2023). Uncertainty-Based Thin Cloud Removal Network via Conditional Variational Autoencoders. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13843. Springer, Cham. https://doi.org/10.1007/978-3-031-26313-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-26313-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26312-5
Online ISBN: 978-3-031-26313-2
eBook Packages: Computer ScienceComputer Science (R0)