Skip to main content

Exposing Face Forgery Clues via Retinex-Based Image Enhancement

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Abstract

Public concerns about deepfake face forgery are continually rising in recent years. Existing deepfake detection approaches typically use convolutional neural networks (CNNs) to mine subtle artifacts under high-quality forged faces. However, most CNN-based deepfake detectors tend to over-fit the content-specific color textures, and thus fail to generalize across different data sources, forgery methods, and/or post-processing operations. It motivates us to develop a method to expose the subtle forgery clues in RGB space. Herein, we propose to utilize multi-scale retinex-based enhancement of RGB space and compose a novel modality, named MSR, to complementary capture the forgery traces. To take full advantage of the MSR information, we propose a two-stream network combined with salience-guided attention and feature re-weighted interaction modules. The salience-guided attention module guides the RGB feature extractor to concentrate more on forgery traces from an MSR perspective. The feature re-weighted interaction module implicitly learns the correlation between the two complementary modalities to promote feature learning for each other. Comprehensive experiments on several benchmarks show that our method outperforms the state-of-the-art face forgery detection methods in detecting severely compressed deepfakes. Besides, our method also shows superior performances on cross-datasets evaluation.

H. Chen and Y. Lin—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://ai.googleblog.com/2019/09/contributing-data-to-deepfake-detection.html.

References

  1. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Advancing high fidelity identity swapping for forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5074–5083 (2020)

    Google Scholar 

  2. Ngo, L.M., aan de Wiel, C., Karaoglu, S., Gevers, T.: Unified application of style transfer for face swapping and reenactment. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  3. Wang, Y., et al.: HifiFace: 3D shape and semantic prior guided high fidelity face swapping. In: Twenty-Ninth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1136–1142 (2021)

    Google Scholar 

  4. Li, Y., Chang, M., Lyu, S.: In Ictu Oculi: exposing AI created fake videos by detecting eye blinking. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7 (2018)

    Google Scholar 

  5. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: 2019 IEEE Winter Applications of Computer Vision Workshops (WACVW), pp. 83–92 (2019)

    Google Scholar 

  6. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–7 (2018)

    Google Scholar 

  7. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Niessner, M.: FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

    Google Scholar 

  8. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 46–52 (2019)

    Google Scholar 

  9. Li, L., et al.: Face X-ray for more general face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5001–5010 (2020)

    Google Scholar 

  10. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6

    Chapter  Google Scholar 

  11. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16317–16326 (2021)

    Google Scholar 

  12. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019)

    Google Scholar 

  13. Liu, Z., Qi, X., Torr., P.H.S.: Global texture enhancement for fake face detection in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8060–8069 (2020)

    Google Scholar 

  14. Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  15. Chen, H., Hu, G., Lei, Z., Chen, Y., Robertson, N.M., Li, S.Z.: Attention-based two-stream convolutional networks for face spoofing detection. IEEE Trans. Inf. Forensics Secur. 15, 578–593 (2020)

    Article  Google Scholar 

  16. Han, J., Gevers, T.: MMD based discriminative learning for face forgery detection. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  17. Zhao, T., Xu, X., Xu, M., Ding, H., Xiong, Y., Xia, W.: Learning self-consistency for deepfake detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15023–15033 (2021)

    Google Scholar 

  18. Wang, G., Jiang, Q., Jin, X., Li, W., Cui, X.: MC-LCR: multimodal contrastive classification by locally correlated representations for effective face forgery detection. Knowl.-Based Syst. 250, 109114 (2022)

    Article  Google Scholar 

  19. Kong, C., Chen, B., Li, H., Wang, S., Rocha, A., Kwong, S.: Detect and locate: exposing face manipulation by semantic- and noise-level telltales. IEEE Trans. Inf. Forensics Secur. 17, 1741–1756 (2022)

    Article  Google Scholar 

  20. Land, E.H., McCann, J.J.: Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  21. Ma, Q., Wang, Y., Zeng, T.: Retinex-based variational framework for low-light image enhancement and denoising. IEEE Trans. Multimed. 1–9 (2022)

    Google Scholar 

  22. Jun, X., et al.: STAR: a structure and texture aware retinex model. IEEE Trans. Image Process. 29, 5022–5037 (2020)

    Article  MATH  Google Scholar 

  23. Park, T., Liu, M.-Y., Wang, T.-C., Zhu, J.-Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  24. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a large-scale challenging dataset for deepfake forensics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3207–3216 (2020)

    Google Scholar 

  25. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Niessner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

    Google Scholar 

  26. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. 38(4), 1–12 (2019)

    Article  Google Scholar 

  27. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10), 1499–1503 (2016)

    Article  Google Scholar 

  28. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  29. Shang, Z., Xie, H., Zha, Z., Lingyun, Yu., Li, Y., Zhang, Y.: PRRNet: pixel-region relation network for face forgery detection. Pattern Recogn. 116, 107950 (2021)

    Article  Google Scholar 

  30. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 772–781 (2021)

    Google Scholar 

  31. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2185–2194 (2021)

    Google Scholar 

  32. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 1–27 (2008)

    MATH  Google Scholar 

  33. Korshunov, P., Marcel, S.: Vulnerability assessment and detection of deepfake videos. In: 2019 International Conference on Biometrics (ICB), pp. 1–6 (2019)

    Google Scholar 

  34. Dolhansky, B., Howes, R., Pflaum, B., Baram, N., Ferrer, C.C.: The Deepfake Detection Challenge (DFDC) Preview Dataset. arXiv:1910.08854 (2019)

  35. Nirkin, Y., Wolf, L., Keller, Y., Hassner, T.: DeepFake detection based on discrepancies between faces and their context. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6111–6121 (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSFC (Grant 61872244), Guangdong Basic and Applied Basic Research Foundation (Grant 2019B151502001), Shenzhen R &D Program (Grant JCYJ20200109105008228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., Lin, Y., Li, B. (2023). Exposing Face Forgery Clues via Retinex-Based Image Enhancement. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26316-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26315-6

  • Online ISBN: 978-3-031-26316-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics