Skip to main content

Learning Using Privileged Information for Zero-Shot Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13844))

Included in the following conference series:

  • 498 Accesses

Abstract

Zero-Shot Action Recognition (ZSAR) aims to recognize video actions that have never been seen during training. Most existing methods assume a shared semantic space between seen and unseen actions and intend to directly learn a mapping from a visual space to the semantic space. This approach has been challenged by the semantic gap between the visual space and semantic space. This paper presents a novel method that uses object semantics as privileged information to narrow the semantic gap and, hence, effectively, assist the learning. In particular, a simple hallucination network is proposed to implicitly extract object semantics during testing without explicitly extracting objects and a cross-attention module is developed to augment visual feature with the object semantics. Experiments on the Olympic Sports, HMDB51 and UCF101 datasets have shown that the proposed method outperforms the state-of-the-art methods by a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  3. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)

    Google Scholar 

  4. Wang, Y., Long, M., Wang, J., Yu, P.S.: Spatiotemporal pyramid network for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 529–1538 (2017) 1

    Google Scholar 

  5. Zhu, Y., et al.: A comprehensive study of deep video action recognition. arXiv preprint arXiv:2012.06567 (2020)

  6. Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3337–3344 (2011)

    Google Scholar 

  7. Fu, Y., Hospedales, T.M., Xiang, T., Fu, Z., Gong, S.: Transductive multi-view embedding for zero-shot recognition and annotation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_38

    Chapter  Google Scholar 

  8. Wang, Q., Chen, K.: Zero-shot visual recognition via bidirectional latent embedding. Int. J. Comput. Vis. 124, 356–383 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  10. Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K.: Rethinking zero-shot video classification: End-to-end training for realistic applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4613–4623 (2020)

    Google Scholar 

  11. Wang, Q., Chen, K.: Alternative semantic representations for zero-shot human action recognition. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_6

    Chapter  Google Scholar 

  12. Jain, M., Van Gemert, J.C., Mensink, T., Snoek, C.G.: Objects2action: classifying and localizing actions without any video example. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4588–4596 (2015)

    Google Scholar 

  13. Su, Y., Xing, M., An, S., Peng, W., Feng, Z.: Vdarn: video disentangling attentive relation network for few-shot and zero-shot action recognition. Ad Hoc Netw. 113, 102380 (2021)

    Article  Google Scholar 

  14. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  15. Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22, 544–557 (2009)

    Article  MATH  Google Scholar 

  16. Niebles, J.C., Chen, C.W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Proceedings of the European Conference on Computer Vision, Springer (2010) 392–405

    Google Scholar 

  17. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  18. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  19. Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action recognition. In: 2015 IEEE International Conference on Image Processing, pp. 63–67. IEEE (2015)

    Google Scholar 

  20. Bishay, M., Zoumpourlis, G., Patras, I.: Tarn: Temporal attentive relation network for few-shot and zero-shot action recognition. arXiv preprint arXiv:1907.09021 (2019)

  21. Zhou, L., Li, W., Ogunbona, P., Zhang, Z.: Semantic action recognition by learning a pose lexicon. Pattern Recogn. 72, 548–562 (2017)

    Article  Google Scholar 

  22. Zhou, L., Li, W., Ogunbona, P., Zhang, Z.: Jointly learning visual poses and pose lexicon for semantic action recognition. IEEE Trans. Circuits Syst. Video Technol. 30, 457–467 (2019)

    Article  Google Scholar 

  23. Chen, S., Huang, D.: Elaborative rehearsal for zero-shot action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 13638–13647 (2021)

    Google Scholar 

  24. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009)

    Google Scholar 

  25. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)

    Google Scholar 

  26. Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vis. 119, 219–238 (2016)

    Article  MathSciNet  Google Scholar 

  27. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)

    Google Scholar 

  28. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  29. Xu, X., Hospedales, T., Gong, S.: Transductive zero-shot action recognition by word-vector embedding. International Journal of Computer Vision 123, 309–333 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Niu, L., Li, W., Xu, D.: Visual recognition by learning from web data: a weakly supervised domain generalization approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2783 (2015)

    Google Scholar 

  31. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Information bottleneck learning using privileged information for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1496–1505 (2016)

    Google Scholar 

  32. Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: Mars: motion-augmented RGB stream for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7882–7891 (2019)

    Google Scholar 

  33. Garcia, N.C., Morerio, P., Murino, V.: Learning with privileged information via adversarial discriminative modality distillation. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2581–2593 (2020)

    Article  Google Scholar 

  34. Mishra, A., Verma, V.K., Reddy, M.S.K., Arulkumar, S., Rai, P., Mittal, A.: A generative approach to zero-shot and few-shot action recognition. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 372–380 (2018)

    Google Scholar 

  35. Mishra, A., Pandey, A., Murthy, H.A.: Zero-shot learning for action recognition using synthesized features. Neurocomputing 390, 117–130 (2020)

    Article  Google Scholar 

  36. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

    Chapter  Google Scholar 

  37. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  38. Xu, X., Hospedales, T.M., Gong, S.: Multi-task zero-shot action recognition with prioritised data augmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 343–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_22

    Chapter  Google Scholar 

  39. Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9436–9445 (2018)

    Google Scholar 

  40. Mandal, D., et al.: Out-of-distribution detection for generalized zero-shot action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9985–9993 (2019)

    Google Scholar 

  41. Gao, J., Zhang, T., Xu, C.: I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs. Proc. AAAI Conf. Artif. Intell. 33, 8303–8311 (2019)

    Google Scholar 

  42. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghong Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Z., Hou, Y., Li, W., Guo, Z., Yu, B. (2023). Learning Using Privileged Information for Zero-Shot Action Recognition. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26316-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26315-6

  • Online ISBN: 978-3-031-26316-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics