Abstract
Zero-Shot Action Recognition (ZSAR) aims to recognize video actions that have never been seen during training. Most existing methods assume a shared semantic space between seen and unseen actions and intend to directly learn a mapping from a visual space to the semantic space. This approach has been challenged by the semantic gap between the visual space and semantic space. This paper presents a novel method that uses object semantics as privileged information to narrow the semantic gap and, hence, effectively, assist the learning. In particular, a simple hallucination network is proposed to implicitly extract object semantics during testing without explicitly extracting objects and a cross-attention module is developed to augment visual feature with the object semantics. Experiments on the Olympic Sports, HMDB51 and UCF101 datasets have shown that the proposed method outperforms the state-of-the-art methods by a large margin.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)
Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4768–4777 (2017)
Wang, Y., Long, M., Wang, J., Yu, P.S.: Spatiotemporal pyramid network for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 529–1538 (2017) 1
Zhu, Y., et al.: A comprehensive study of deep video action recognition. arXiv preprint arXiv:2012.06567 (2020)
Liu, J., Kuipers, B., Savarese, S.: Recognizing human actions by attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3337–3344 (2011)
Fu, Y., Hospedales, T.M., Xiang, T., Fu, Z., Gong, S.: Transductive multi-view embedding for zero-shot recognition and annotation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 584–599. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_38
Wang, Q., Chen, K.: Zero-shot visual recognition via bidirectional latent embedding. Int. J. Comput. Vis. 124, 356–383 (2017)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Brattoli, B., Tighe, J., Zhdanov, F., Perona, P., Chalupka, K.: Rethinking zero-shot video classification: End-to-end training for realistic applications. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4613–4623 (2020)
Wang, Q., Chen, K.: Alternative semantic representations for zero-shot human action recognition. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 87–102. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_6
Jain, M., Van Gemert, J.C., Mensink, T., Snoek, C.G.: Objects2action: classifying and localizing actions without any video example. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4588–4596 (2015)
Su, Y., Xing, M., An, S., Peng, W., Feng, Z.: Vdarn: video disentangling attentive relation network for few-shot and zero-shot action recognition. Ad Hoc Netw. 113, 102380 (2021)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Vapnik, V., Vashist, A.: A new learning paradigm: learning using privileged information. Neural Netw. 22, 544–557 (2009)
Niebles, J.C., Chen, C.W., Fei-Fei, L.: Modeling temporal structure of decomposable motion segments for activity classification. In: Proceedings of the European Conference on Computer Vision, Springer (2010) 392–405
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)
Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Xu, X., Hospedales, T., Gong, S.: Semantic embedding space for zero-shot action recognition. In: 2015 IEEE International Conference on Image Processing, pp. 63–67. IEEE (2015)
Bishay, M., Zoumpourlis, G., Patras, I.: Tarn: Temporal attentive relation network for few-shot and zero-shot action recognition. arXiv preprint arXiv:1907.09021 (2019)
Zhou, L., Li, W., Ogunbona, P., Zhang, Z.: Semantic action recognition by learning a pose lexicon. Pattern Recogn. 72, 548–562 (2017)
Zhou, L., Li, W., Ogunbona, P., Zhang, Z.: Jointly learning visual poses and pose lexicon for semantic action recognition. IEEE Trans. Circuits Syst. Video Technol. 30, 457–467 (2019)
Chen, S., Huang, D.: Elaborative rehearsal for zero-shot action recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 13638–13647 (2021)
Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 951–958 (2009)
Wang, H., Schmid, C.: Action recognition with improved trajectories. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3551–3558 (2013)
Wang, H., Oneata, D., Verbeek, J., Schmid, C.: A robust and efficient video representation for action recognition. Int. J. Comput. Vis. 119, 219–238 (2016)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)
Xu, X., Hospedales, T., Gong, S.: Transductive zero-shot action recognition by word-vector embedding. International Journal of Computer Vision 123, 309–333 (2017)
Niu, L., Li, W., Xu, D.: Visual recognition by learning from web data: a weakly supervised domain generalization approach. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2783 (2015)
Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Information bottleneck learning using privileged information for visual recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1496–1505 (2016)
Crasto, N., Weinzaepfel, P., Alahari, K., Schmid, C.: Mars: motion-augmented RGB stream for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7882–7891 (2019)
Garcia, N.C., Morerio, P., Murino, V.: Learning with privileged information via adversarial discriminative modality distillation. IEEE Trans. Pattern Anal. Mach. Intell. 42, 2581–2593 (2020)
Mishra, A., Verma, V.K., Reddy, M.S.K., Arulkumar, S., Rai, P., Mittal, A.: A generative approach to zero-shot and few-shot action recognition. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, pp. 372–380 (2018)
Mishra, A., Pandey, A., Murthy, H.A.: Zero-shot learning for action recognition using synthesized features. Neurocomputing 390, 117–130 (2020)
Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Xu, X., Hospedales, T.M., Gong, S.: Multi-task zero-shot action recognition with prioritised data augmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 343–359. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_22
Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9436–9445 (2018)
Mandal, D., et al.: Out-of-distribution detection for generalized zero-shot action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9985–9993 (2019)
Gao, J., Zhang, T., Xu, C.: I know the relationships: zero-shot action recognition via two-stream graph convolutional networks and knowledge graphs. Proc. AAAI Conf. Artif. Intell. 33, 8303–8311 (2019)
Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, Z., Hou, Y., Li, W., Guo, Z., Yu, B. (2023). Learning Using Privileged Information for Zero-Shot Action Recognition. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-26316-3_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26315-6
Online ISBN: 978-3-031-26316-3
eBook Packages: Computer ScienceComputer Science (R0)