Skip to main content

SST-VLM: Sparse Sampling-Twice Inspired Video-Language Model

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13844))

Included in the following conference series:

  • 330 Accesses

Abstract

Most existing video-language modeling methods densely sample dozens (or even hundreds) of video clips from each raw video to learn the video representation for text-to-video retrieval. This paradigm requires high computational overload. Therefore, sparse sampling-based methods are proposed recently, which only sample a handful of video clips with short time duration from each raw video. However, they still struggle to learn a reliable video embedding with fragmented clips per raw video. To overcome this challenge, we present a novel video-language model called SST-VLM inspired by a Sparse Sampling-Twice (SST) strategy, where each raw video is represented with only two holistic video clips (each has a few frames, but throughout the entire video). For training our SST-VLM, we propose a new Dual Cross-modal MoCo (Dual X-MoCo) algorithm, which includes two cross-modal MoCo modules to respectively model the two clip-text pairs (for each video-text input). In addition to the classic cross-modal contrastive objective, we devise a clip-level alignment objective to obtain more consistent retrieval performance by aligning the prediction distributions of the two video clips (based on the negative queues of MoCo). Extensive experiments show that our SST-VLM achieves new state-of-the-art in text-to-video retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xu, J., Mei, T., Yao, T., Rui, Y.: MSR-VTT: a large video description dataset for bridging video and language. In: CVPR, pp. 5288–5296 (2016)

    Google Scholar 

  2. Chen, D., Dolan, W.B.: Collecting highly parallel data for paraphrase evaluation. In: ACL, pp. 190–200 (2011)

    Google Scholar 

  3. Wang, X., Wu, J., Chen, J., Li, L., Wang, Y., Wang, W.Y.: VaTeX: a large-scale, high-quality multilingual dataset for video-and-language research. In: ICCV, pp. 4580–4590 (2019)

    Google Scholar 

  4. Hendricks, A.L., Wang, O., Shechtman, E., Sivic, J., Darrell, T., Russell, B.: Localizing moments in video with natural language. In: ICCV, pp. 5804–5813 (2017)

    Google Scholar 

  5. Rohrbach, A., Rohrbach, M., Tandon, N., Schiele, B.: A dataset for movie description. In: CVPR, pp. 3202–3212 (2015)

    Google Scholar 

  6. Zhou, L., Xu, C., Corso, J.: Towards automatic learning of procedures from web instructional videos. AAA I, 7590–7598 (2018)

    Google Scholar 

  7. Antol, S., et al.: VQA: visual question answering. In: ICCV, pp. 2425–2433 (2015)

    Google Scholar 

  8. Lei, J., Yu, L., Bansal, M., Berg, T.L.: TVQA: Localized, compositional video question answering. In: EMNLP, pp. 1369–1379 (2018)

    Google Scholar 

  9. Jang, Y., Song, Y., Yu, Y., Kim, Y., Kim, G.: TGIF-QA: toward spatio-temporal reasoning in visual question answering. In: CVPR, 1359–1367 (2017)

    Google Scholar 

  10. Lei, J., Li, L., Zhou, L., Gan, Z., Berg, T.L., Bansal, M., Liu, J.: Less is more: ClipBERT for video-and-language learning via sparse sampling. CVPR, pp. 7331–7341 (2021)

    Google Scholar 

  11. Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answering and retrieval. In: ECCV, pp. 487–503 (2018)

    Google Scholar 

  12. Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: HowTo100M: learning a text-video embedding by watching hundred million narrated video clips. In: ICCV, pp. 2630–2640 (2019)

    Google Scholar 

  13. Zhu, L., Yang, Y.: ActBERT: learning global-local video-text representations. In: CVPR, pp. 8743–8752 (2020)

    Google Scholar 

  14. Li, L., Chen, Y.C., Cheng, Y., Gan, Z., Yu, L., Liu, J.: HERO: hierarchical encoder for video+ language omni-representation pre-training. In: EMNLP, pp. 2046–2065 (2020)

    Google Scholar 

  15. Feng, Z., Zeng, Z., Guo, C., Li, Z.: Exploiting visual semantic reasoning for video-text retrieval. IJCA I, 1005–1011 (2020)

    Google Scholar 

  16. Korbar, B., Petroni, F., Girdhar, R., Torresani, L.: Video understanding as machine translation. arXiv preprint arXiv:2006.07203 (2020)

  17. Li, Z., Guo, C., Yang, B., Feng, Z., Zhang, H.: A novel convolutional architecture for video-text retrieval. In: ICME, pp. 1–6 (2020)

    Google Scholar 

  18. Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: a joint video and image encoder for end-to-end retrieval. arXiv preprint arXiv:2104.00650 (2021)

  19. Wu, P., He, X., Tang, M., Lv, Y., Liu, J.: HANet: hierarchical alignment networks for video-text retrieval. In: ACM-MM, pp. 3518–3527 (2021)

    Google Scholar 

  20. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR, pp. 9726–9735 (2020)

    Google Scholar 

  21. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  22. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 5998–6008 (2017)

    Google Scholar 

  23. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT, pp. 4171–4186(2019)

    Google Scholar 

  24. Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13

    Chapter  Google Scholar 

  25. Rouditchenko, A., et al.: AVLnet: learning audio-visual language representations from instructional videos. arXiv preprint arXiv:2006.09199 (2020)

  26. Amrani, E., Ben-Ari, R., Rotman, D., Bronstein, A.: Noise estimation using density estimation for self-supervised multimodal learning. AAA I, 6644–6652 (2021)

    Google Scholar 

  27. Luo, H., et al.: UniVL: a unified video and language pre-training model for multimodal understanding and generation. arXiv preprint arXiv:2002.06353 (2020)

  28. Yang, J., Bisk, Y., Gao, J.: TACo: token-aware cascade contrastive learning for video-text alignment. arXiv preprint arXiv:2108.09980 (2021)

  29. Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: ICLR (2021)

    Google Scholar 

  30. Liu, S., Fan, H., Qian, S., Chen, Y., Ding, W., Wang, Z.: HiT: hierarchical transformer with momentum contrast for video-text retrieval. arXiv preprint arXiv:2103.15049 (2021)

  31. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  32. Wang, X., Zhu, L., Yang, Y.: T2VLAD: global-local sequence alignment for text-video retrieval. In: CVPR, pp. 5079–5088 (2021)

    Google Scholar 

  33. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  34. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR, pp. 3733–3742(2018)

    Google Scholar 

  35. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  36. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS, pp. 18661–18673 (2020)

    Google Scholar 

  37. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)

    Google Scholar 

  38. Chen, T., Kornblith, S., Swersky, K., Norouzi, M., Hinton, G.E.: Big self-supervised models are strong semi-supervised learners. In: NeurIPS, pp. 22243–22255 (2020)

    Google Scholar 

  39. Grill, J., et al.: Bootstrap your own latent - a new approach to self-supervised learning. In: NeurIPS, pp. 21271–21284 (2020)

    Google Scholar 

  40. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. arXiv preprint arXiv:2104.02057 (2021)

  41. Chen, X., He, K.: Exploring simple siamese representation learning. In: CVPR, pp. 15750–15758 (2021)

    Google Scholar 

  42. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: ACL, pp. 2556–2565 (2018)

    Google Scholar 

  43. Krishna, R., et al.: Visual genome: Connecting language and vision using crowdsourced dense image annotations. IJCV, pp. 32–73(2017)

    Google Scholar 

  44. Ordonez, V., Kulkarni, G., Berg, T.: Im2Text: describing images using 1 million captioned photographs. In: NeurIPS, pp. 1143–1151(2011)

    Google Scholar 

  45. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server. arXiv preprint arXiv:1504.00325 (2015)

  46. Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazebnik, S.: Flickr30k entities: collecting region-to-phrase correspondences for richer image-to-sentence models. In: ICCV, pp. 2641–2649 (2015)

    Google Scholar 

  47. Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: video retrieval using representations from collaborative experts. In: BMVC, p. 279 (2019)

    Google Scholar 

  48. Chen, S., Zhao, Y., Jin, Q., Wu, Q.: Fine-grained video-text retrieval with hierarchical graph reasoning. In: CVPR, pp. 10635–10644(2020)

    Google Scholar 

  49. Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings with multimodal neural language models. arXiv preprint arXiv:1411.2539 (2014)

  50. Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: VSE++: improving visual-semantic embeddings with hard negatives. In: BMVC, p. 12 (2018)

    Google Scholar 

  51. Mithun, N.C., Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning joint embedding with multimodal cues for cross-modal video-text retrieval. In: ICMR, pp. 19–27(2018)

    Google Scholar 

  52. Chefer, H., Gur, S., Wolf, L.: Transformer interpretability beyond attention visualization. In: CVPR, pp. 782–791 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, Y., Lu, Z. (2023). SST-VLM: Sparse Sampling-Twice Inspired Video-Language Model. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13844. Springer, Cham. https://doi.org/10.1007/978-3-031-26316-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26316-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26315-6

  • Online ISBN: 978-3-031-26316-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics