Abstract
Recently, the transformer model has been successfully employed for the multi-view 3D reconstruction problem. However, challenges remain in designing an attention mechanism to explore the multi-view features and exploit their relations for reinforcing the encoding-decoding modules. This paper proposes a new model, namely 3D coarse-to-fine transformer (3D-C2FT), by introducing a novel coarse-to-fine (C2F) attention mechanism for encoding multi-view features and rectifying defective voxel-based 3D objects. C2F attention mechanism enables the model to learn multi-view information flow and synthesize 3D surface correction in a coarse to fine-grained manner. The proposed model is evaluated by ShapeNet and Multi-view Real-life voxel-based datasets. Experimental results show that 3D-C2FT achieves notable results and outperforms several competing models on these datasets.
L. C. O. Tiong and D. Sigmund—These authors have contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Source Code URL: https://github.com/tiongleslie/3D-C2FT/.
References
Abnar, S., Zuidema, W.: Quantifying attention flow in transformers. arXiv e-prints (2020). https://arxiv.org/abs/2005.00928
Burchfiel, B., Konidaris, G.: Bayesian eigenobjects: a unified framework for 3D robot perception. In: Robotics: Science and Systems, vol. 13 (2017)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3d object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Dosovitskiy, A., et al.: An image is worth 16 \(\times \) 16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2021)
Gao, Y., Luo, J., Qiu, H., Wu, B.: Survey of structure from motion. In: Proceedings of 2014 International Conference on Cloud Computing and Internet of Things, pp. 72–76 (2014)
Groen, I.I.A., Baker, C.I.: Previews scenes in the human brain: comparing 2D versus 3D representations. Neuron 101(1), 8–10 (2019)
Han, X.F., Laga, H., Bennamoun, M.: Image-based 3D object reconstruction: state-of-the-art and trends in the deep learning era. IEEE Trans. Pattern Anal. Mach. Intell. 43(5), 1578–1604 (2021)
Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708 (2017)
Jabłoński, S., Martyn, T.: Real-time voxel rendering algorithm based on screen space billboard voxel buffer with sparse lookup textures. In: 24th Conference on Computer Graphics, Visualization and Computer Vision, pp. 27–36 (2016)
Kanzler, M., Rautenhaus, M., Westermann, R.: A voxel-based rendering pipeline for large 3d line sets. IEEE Trans. Visual Comput. Graph. 25(7), 2378–2391 (2019)
Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), pp. 364–375. Curran Associates, Inc. (2017)
Kargas, A., Loumos, G., Varoutas, D.: Using different ways of 3D reconstruction of historical cities for gaming purposes: the case study of Nafplio. Heritage 2(3), 1799–1811 (2019)
Kniaz, V.V., Knyaz, V.A., Remondino, F., Bordodymov, A., Moshkantsev, P.: Image-to-voxel model translation for 3d scene reconstruction and segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 105–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_7
Malik, J., et al.: HandVoxNet: deep voxel-based network for 3d hand shape and pose estimation from a single depth map. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7111–7120 (2020)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3d reconstruction in function space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Nabil, M., Saleh, F.: 3D reconstruction from images for museum artefacts: a comparative study. In: International Conference on Virtual Systems and Multimedia (VSMM), pp. 257–260. IEEE (2014)
Nguyen, T.Q., Salazar, J.: Transformers without tears: improving the normalization of self-attention. In: Proceedings of the 16th International Conference on Spoken Language Translation, Hong Kong (2019)
Park, N., Kim, S.: How do vision transformers work? In: International Conference on Learning Representations (ICLR) (2022)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS), pp. 8024–8035 (2019)
Păvăloiu, I.B., Vasilăţeanu, A., Goga, N., Marin, I., Ilie, C., Ungar, A., Pătraşcu, I.: 3D dental reconstruction from CBCT data. In: International Symposium on Fundamentals of Electrical Engineering (ISFEE), pp. 4–9 (2014)
Roointan, S., Tavakolian, P., Sivagurunathan, K.S., Floryan, M., Mandelis, A., Abrams, S.H.: 3D dental subsurface imaging using enhanced truncated correlation-photothermal coherence tomography. Sci. Rep. 9(1), 1–12 (2019)
Shi, Q., Li, C., Wang, C., Luo, H., Huang, Q., Fukuda, T.: Design and implementation of an omnidirectional vision system for robot perception. Mechatronics 41, 58–66 (2017)
Shi, Z., Meng, Z., Xing, Y., Ma, Y., Wattenhofer, R.: 3D-RETR: end-to-end single and multi-view 3D reconstruction with transformers. In: British Machine Vision Conference (BMVC), pp. 1–14 (2021)
Silveira, G., Malis, E., Rives, P.: An efficient direct approach to visual SLAM. IEEE Trans. Rob. 24(5), 969–979 (2008)
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: IEEE International Conference on Computer Vision (ICCV), pp. 2088–2096 (2017)
Tron, R., Vidal, R.: Distributed 3-D localization of camera sensor networks from 2-D image Measurements. IEEE Trans. Autom. Control 59(12), 3325–3340 (2014)
Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS), vol. 30, pp. 6000–6010 (2017)
Wang, D., et al.: Multi-view 3D reconstruction with transformer. In: International Conference on Computer Vision (ICCV), pp. 5722–5731 (2021)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.-G.: Pixel2Mesh: generating 3d mesh models from single RGB images. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 55–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_4
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wilson, K., Snavely, N.: Robust global translations with 1DSfM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 61–75. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_5
Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1912–1920 (2015)
Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: context-aware 3D reconstruction from single and multi-view images. In: IEEE International Conference on Computer Vision (ICCV), pp. 2690–2698 (2019)
Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. Int. J. Comput. Vis. 128(12), 2919–2935 (2020)
Yagubbayli, F., Tonioni, A., Tombari, F.: LegoFormer: transformers for block-by-block multi-view 3D reconstruction. arXiv e-prints (2021). http://arxiv.org/abs/2106.12102
Yang, B., Wang, S., Markham, A., Trigoni, N.: Robust attentional aggregation of deep feature sets for multi-view 3D reconstruction. Int. J. Comput. Vis. 128(1), 53–73 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tiong, L.C.O., Sigmund, D., Teoh, A.B.J. (2023). 3D-C2FT: Coarse-to-Fine Transformer for Multi-view 3D Reconstruction. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13841. Springer, Cham. https://doi.org/10.1007/978-3-031-26319-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-26319-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26318-7
Online ISBN: 978-3-031-26319-4
eBook Packages: Computer ScienceComputer Science (R0)