Abstract
This paper tackles the problem of Cross-view Video-based camera Localization (CVL). The task is to localize a query camera by leveraging information from its past observations, i.e., a continuous sequence of images observed at previous time stamps, and matching them to a large overhead-view satellite image. The critical challenge of this task is to learn a powerful global feature descriptor for the sequential ground-view images while considering its domain alignment with reference satellite images. For this purpose, we introduce CVLNet, which first projects the sequential ground-view images into an overhead view by exploring the ground-and-overhead geometric correspondences and then leverages the photo consistency among the projected images to form a global representation. In this way, the cross-view domain differences are bridged. Since the reference satellite images are usually pre-cropped and regularly sampled, there is always a misalignment between the query camera location and its matching satellite image center. Motivated by this, we propose estimating the query camera’s relative displacement to a satellite image before similarity matching. In this displacement estimation process, we also consider the uncertainty of the camera location. For example, a camera is unlikely to be on top of trees. To evaluate the performance of the proposed method, we collect satellite images from Google Map for the KITTI dataset and construct a new cross-view video-based localization benchmark dataset, KITTI-CVL. Extensive experiments have demonstrated the effectiveness of video-based localization over single image-based localization and the superiority of each proposed module over other alternatives.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For clarity, we use “overhead” throughout the paper to denote the projected features from ground-views, and “satellite” to indicate the real satellite image/features.
References
Vo, N.N., Hays, J.: Localizing and orienting street views using overhead imagery. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 494–509. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_30
Hu, S., Feng, M., Nguyen, R.M.H., Hee Lee, G.: CVM-Net: cross-view matching network for image-based ground-to-aerial geo-localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Liu, L., Li, H.: Lending orientation to neural networks for cross-view geo-localization. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Regmi, K., Shah, M.: Bridging the domain gap for ground-to-aerial image matching. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Cai, S., Guo, Y., Khan, S., Hu, J., Wen, G.: Ground-to-aerial image geo-localization with a hard exemplar reweighting triplet loss. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Shi, Y., Liu, L., Yu, X., Li, H.: Spatial-aware feature aggregation for image based cross-view geo-localization. In: Advances in Neural Information Processing Systems, pp. 10090–10100 (2019)
Shi, Y., Yu, X., Liu, L., Zhang, T., Li, H.: Optimal feature transport for cross-view image geo-localization. Account. Audit. Account. I, 11990–11997 (2020)
Shi, Y., Yu, X., Campbell, D., Li, H.: Where am I looking at? Joint location and orientation estimation by cross-view matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4064–4072 (2020)
Zhu, S., Yang, T., Chen, C.: Revisiting street-to-aerial view image geo-localization and orientation estimation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 756–765 (2021)
Toker, A., Zhou, Q., Maximov, M., Leal-Taixé, L.: Coming down to earth: Satellite-to-street view synthesis for geo-localization. In: CVPR (2021)
Zhu, S., Yang, T., Chen, C.: Vigor: cross-view image geo-localization beyond one-to-one retrieval. In: CVPR (2021)
Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32, 1231–1237 (2013)
https://developers.google.com/maps/documentation/maps-static/overview
Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., Sivic, J.: Netvlad: CNN architecture for weakly supervised place recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5297–5307 (2016)
Kim, H.J., Dunn, E., Frahm, J.M.: Learned contextual feature reweighting for image geo-localization. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3251–3260 IEEE (2017)
Liu, L., Li, H., Dai, Y.: Stochastic attraction-repulsion embedding for large scale image localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2570–2579 (2019)
Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3456–3465 (2017)
Ge, Y., Wang, H., Zhu, F., Zhao, R., Li, H.: Self-supervising fine-grained region similarities for large-scale image localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 369–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_22
Zhou, Y., Wan, G., Hou, S., Yu, L., Wang, G., Rui, X., Song, S.: DA4AD: end-to-end deep attention-based visual localization for autonomous driving. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 271–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_17
Castaldo, F., Zamir, A., Angst, R., Palmieri, F., Savarese, S.: Semantic cross-view matching. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 9–17 (2015)
Lin, T.Y., Belongie, S., Hays, J.: Cross-view image geolocalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 891–898 (2013)
Mousavian, A., Kosecka, J.: Semantic image based geolocation given a map. arXiv preprint arXiv:1609.00278 (2016)
Tian, Y., Chen, C., Shah, M.: Cross-view image matching for geo-localization in urban environments. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3608–3616 (2017)
Hu, S., Lee, G.H.: Image-based geo-localization using satellite imagery. Int. J. Comput. Vision 128, 1205–1219 (2020)
Shi, Y., Yu, X., Liu, L., Campbell, D., Koniusz, P., Li, H.: Accurate 3-DOF camera geo-localization via ground-to-satellite image matching. arXiv preprint arXiv:2203.14148 (2022)
Zhu, S., Shah, M., Chen, C.: Transgeo: transformer is all you need for cross-view image geo-localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1162–1171 (2022)
Elhashash, M., Qin, R.: Cross-view slam solver: global pose estimation of monocular ground-level video frames for 3d reconstruction using a reference 3d model from satellite images. ISPRS J. Photogramm. Remote. Sens. 188, 62–74 (2022)
Guo, Y., Choi, M., Li, K., Boussaid, F., Bennamoun, M.: Soft exemplar highlighting for cross-view image-based geo-localization. IEEE Trans. Image Process. 31, 2094–2105 (2022)
Zhao, J., Zhai, Q., Huang, R., Cheng, H.: Mutual generative transformer learning for cross-view geo-localization. arXiv preprint arXiv:2203.09135 (2022)
Bloesch, M., Omari, S., Hutter, M., Siegwart, R.: Robust visual inertial odometry using a direct ekf-based approach. In,: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).pp. 298–304. IEEE (2015)
Leutenegger, S., Lynen, S., Bosse, M., Siegwart, R., Furgale, P.: Keyframe-based visual-inertial odometry using nonlinear optimization. Int. J. Robot. Res. 34, 314–334 (2015)
Chien, H.J., Chuang, C.C., Chen, C.Y., Klette, R.: When to use what feature? sift, surf, orb, or a-kaze features for monocular visual odometry. 2016 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6 (2016)
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza, D., Neira, J., Reid, I., Leonard, J.J.: Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. IEEE Trans. Rob. 32, 1309–1332 (2016)
Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54
Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In,: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality. pp. 225–234. IEEE (2007)
Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Rob. 31, 1147–1163 (2015)
Mur-Artal, R., Tardós, J.D.: Orb-slam2: An open-source slam system for monocular, stereo, and RGB-D cameras. IEEE Trans. Rob. 33, 1255–1262 (2017)
Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós, J.D.: Orb-slam3: an accurate open-source library for visual, visual-inertial, and multimap slam. IEEE Trans. Robot. 37, 1874–1890 (2021)
Mur-Artal, R., Tardós, J.D.: Visual-inertial monocular slam with map reuse. IEEE Robot. Autom. Lett. 2, 796–803 (2017)
Wolcott, R.W., Eustice, R.M.: Visual localization within lidar maps for automated urban driving. 2014 IEEE/RSJ International Conference on Intelligent Robots and System, pp. 176–183 (2014)
Voodarla, M., Shrivastava, S., Manglani, S., Vora, A., Agarwal, S., Chakravarty, P.: S-BEV: semantic birds-eye view representation for weather and lighting invariant 3-DOF localization (2021)
Stenborg, E., Toft, C., Hammarstrand, L.: Long-term visual localization using semantically segmented images. In,: IEEE International Conference on Robotics and Automation (ICRA). pp .6484–6490. IEEE (2018)
Stenborg, E., Sattler, T., Hammarstrand, L.: Using image sequences for long-term visual localization. In: 2020 International Conference on 3D Vision (3DV), pp. 938–948 IEEE (2020)
Vaca-Castano, G., Zamir, A.R., Shah, M.: City scale geo-spatial trajectory estimation of a moving camera. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1186–1193 IEEE (2012)
Regmi, K., Shah, M.: Video geo-localization employing geo-temporal feature learning and GPS trajectory smoothing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12126–12135 (2021)
Yousif, K., Bab-Hadiashar, A., Hoseinnezhad, R.: An overview to visual odometry and visual slam: applications to mobile robotics. Intell. Ind. Syst. 1, 289–311 (2015)
Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. IEEE Robot. Autom. Mag. 18, 80–92 (2011)
Gao, X., Wang, R., Demmel, N., Cremers, D.: Ldso: direct sparse odometry with loop closure. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2198–2204 IEEE (2018)
Kasyanov, A., Engelmann, F., Stückler, J., Leibe, B.: Keyframe-based visual-inertial online slam with relocalization. In,: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 6662–6669. IEEE (2017)
Liu, D., Cui, Y., Guo, X., Ding, W., Yang, B., Chen, Y.: Visual localization for autonomous driving: mapping the accurate location in the city maze (2020)
Hou, Y., Zheng, L., Gould, S.: Multiview Detection with Feature Perspective Transformation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 1–18. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_1
Hou, Y., Zheng, L.: Multiview detection with shadow transformer (and view-coherent data augmentation). In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1673–1682 (2021)
Vora, J., Dutta, S., Jain, K., Karthik, S., Gandhi, V.: Bringing generalization to deep multi-view detection. arXiv preprint arXiv:2109.12227 (2021)
Ma, J., Tong, J., Wang, S., Zhao, W., Zheng, L., Nguyen, C.: Voxelized 3d feature aggregation for multiview detection. arXiv preprint arXiv:2112.03471 (2021)
Zhang, Q., Lin, W., Chan, A.B.: Cross-view cross-scene multi-view crowd counting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 557–567 (2021)
Zhang, Q., Chan, A.B.: Wide-area crowd counting via ground-plane density maps and multi-view fusion CNNS. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8297–8306 (2019)
Zhang, Q., Chan, A.B.: 3d crowd counting via multi-view fusion with 3d gaussian kernels. Proceedings of the AAAI Conference on Artificial Intelligence. 34, 12837–12844 (2020)
Zhang, Q., Chan, A.B.: Wide-area crowd counting: Multi-view fusion networks for counting in large scenes. Int. J. Comput Vis. 130, 1938–1960 (2022)
Chen, L., et al.: Persformer: 3D lane detection via perspective transformer and the openlane benchmark. arXiv preprint arXiv:2203.11089 (2022)
Shi, Y., Campbell, D.J., Yu, X., Li, H.: Geometry-guided street-view panorama synthesis from satellite imagery. IEEE Trans. Pattern Anal. Mach. Intell. 44, 10009–10022(2022)
Shi, Y., Li, H.: Beyond cross-view image retrieval: Highly accurate vehicle localization using satellite image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17010–17020 (2022)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4104–4113 . (2016)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Acknowledgments
This research is funded in part by ARC-Discovery grants (DP190102261 and DP220100800 to HL, DP220100800 to XY) and ARC-DECRA grant (DE230100477 to XY). YS is a China Scholarship Council (CSC)-funded Ph.D. student to ANU. We thank all anonymous reviewers and ACs for their constructive suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, Y., Yu, X., Wang, S., Li, H. (2023). CVLNet: Cross-view Semantic Correspondence Learning for Video-Based Camera Localization. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13841. Springer, Cham. https://doi.org/10.1007/978-3-031-26319-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-26319-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26318-7
Online ISBN: 978-3-031-26319-4
eBook Packages: Computer ScienceComputer Science (R0)