Abstract
Current few-shot learning models capture visual object relations in the so-called meta-learning setting under a fixed-resolution input. However, such models have a limited generalization ability under the scale and location mismatch between objects, as only few samples from target classes are provided. Therefore, the lack of a mechanism to match the scale and location between pairs of compared images leads to the performance degradation. The importance of image contents varies across coarse-to-fine scales depending on the object and its class label, e.g., generic objects and scenes rely on their global appearance while fine-grained objects rely more on their localized visual patterns. In this paper, we study the impact of scale and location mismatch in the few-shot learning scenario, and propose a novel Spatially-aware Matching (SM) scheme to effectively perform matching across multiple scales and locations, and learn image relations by giving the highest weights to the best matching pairs. The SM is trained to activate the most related locations and scales between support and query data. We apply and evaluate SM on various few-shot learning models and backbones for comprehensive evaluations. Furthermore, we leverage an auxiliary self-supervisory discriminator to train/predict the spatial- and scale-level index of feature vectors we use. Finally, we develop a novel transformer-based pipeline to exploit self- and cross-attention in a spatially-aware matching process. Our proposed design is orthogonal to the choice of backbone and/or comparator.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NIPS, pp. 3630–3638 (2016)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: NeurIPS, pp. 4077–4087 (2017)
Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. arXiv preprint arXiv:1711.06025 (2017)
Zhang, H., Koniusz, P.: Power normalizing second-order similarity network for few-shot learning. In: WACV, pp. 1185–1193. IEEE (2019)
Porikli, F., Tuzel, O.: Covariance tracker. In: CVPR (2006)
Guo, K., Ishwar, P., Konrad, J.: Action recognition from video using feature covariance matrices. Trans. Imgage Process. 22, 2479–2494 (2013)
Carreira, J., Caseiro, R., Batista, J., Sminchisescu, C.: Semantic segmentation with second-order pooling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 430–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_32
Koniusz, P., Yan, F., Gosselin, P.H., Mikolajczyk, K.: Higher-order occurrence pooling for bags-of-words: visual concept detection. IEEE Trans. Pattern Anal. Mach. Intell. 39, 313–326 (2017)
Koniusz, P., Zhang, H., Porikli, F.: A deeper look at power normalizations. In: CVPR, pp. 5774–5783 (2018)
Wertheimer, D., Hariharan, B.: Few-shot learning with localization in realistic settings. In: CVPR, pp. 6558–6567 (2019)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR 2, 2169–2178 (2006)
Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: CVPR, pp. 1794–1801 (2009)
Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through shared densities on transforms. In: CVPR, vol. 1, pp. 464–471 (2000)
Li, F.F., VanRullen, R., Koch, C., Perona, P.: Rapid natural scene categorization in the near absence of attention. Proc. Natl. Acad. Sci. 99, 9596–9601 (2002)
Fink, M.: Object classification from a single example utilizing class relevance metrics. In: NIPS, pp. 449–456 (2005)
Bart, E., Ullman, S.: Cross-generalization: Learning novel classes from a single example by feature replacement. In: CVPR, pp. 672–679 (2005)
Fei-Fei, L., Fergus, R., Perona, P.: One-shot learning of object categories. IEEE Trans. Pattern Anal. Mach. Intell. 28, 594–611 (2006)
Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual concepts. CogSci (2011)
Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)
Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML, pp. 1126–1135 (2017)
Garcia, V., Bruna, J.: Few-shot learning with graph neural networks. arXiv preprint arXiv:1711.04043 (2017)
Rusu, A.A., et al.: Meta-learning with latent embedding optimization. arXiv preprint arXiv:1807.05960 (2018)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR, pp. 4367–4375 (2018)
Zhang, H., Zhang, J., Koniusz, P.: Few-shot learning via saliency-guided hallucination of samples. In: CVPR, pp. 2770–2779 (2019)
Kim, J., Kim, T., Kim, S., Yoo, C.D.: Edge-labeling graph neural network for few-shot learning. In: CVPR (2019)
Gidaris, S., Komodakis, N.: Generating classification weights with GNN denoising autoencoders for few-shot learning. In: CVPR (2019)
Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Cross attention network for few-shot classification. In: NeurIPS, vol. 32 (2019)
Wu, Z., Li, Y., Guo, L., Jia, K.: Parn: Position-aware relation networks for few-shot learning. In: ICCV, pp. 6659–6667 (2019)
Hao, F., He, F., Cheng, J., Wang, L., Cao, J., Tao, D.: Collect and select: semantic alignment metric learning for few-shot learning. In: CVPR, pp. 8460–8469 (2019)
Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: CVPR, pp. 7260–7268 (2019)
Zhang, H., Li, H., Koniusz, P.: Multi-level second-order few-shot learning. IEEE Trans. Multimed. 99, 1–16 (2022)
Ni, G., Zhang, H., Zhao, J., Xu, L., Yang, W., Lan, L.: ANF: attention-based noise filtering strategy for unsupervised few-shot classification. In: Pham, D.N., Theeramunkong, T., Governatori, G., Liu, F. (eds.) PRICAI 2021. LNCS (LNAI), vol. 13033, pp. 109–123. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89370-5_9
Simon, C., Koniusz, P., Nock, R., Harandi, M.: On modulating the gradient for meta-learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 556–572. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_33
Sun, K., Koniusz, P., Wang, Z.: Fisher-Bures adversary graph convolutional networks. UAI 115, 465–475 (2019)
Zhu, H., Koniusz, P.: Simple spectral graph convolution. In: ICLR (2021)
Zhu, H., Sun, K., Koniusz, P.: Contrastive Laplacian eigenmaps. In: NeurIPS, pp. 5682–5695 (2021)
Zhang, Y., Zhu, H., Meng, Z., Koniusz, P., King, I.: Graph-adaptive rectified linear unit for graph neural networks. In: The Web Conference (WWW), pp. 1331–1339. ACM (2022)
Zhang, Y., Zhu, H., Song, Z., Koniusz, P., King, I.: COSTA: covariance-preserving feature augmentation for graph contrastive learning. In: KDD, pp. 2524–2534. ACM (2022)
Wang, L., Liu, J., Koniusz, P.: 3d skeleton-based few-shot action recognition with JEANIE is not so naïve. arXiv preprint arXiv: 2112.12668 (2021)
Wang, L., Koniusz, P.: Temporal-viewpoint transportation plan for skeletal few-shot action recognition. In: ACCV (2022)
Wang, L., Koniusz, P.: Uncertainty-DTW for time series and sequences. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision–ECCV 2022. ECCV 2022. LNCS, vol. 13681, pp. 176–195. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19803-8_11
Kang, D., Kwon, H., Min, J., Cho, M.: Relational embedding for few-shot classification. In: ICCV, pp. 8822–8833 (2021)
Zhu, H., Koniusz, P.: EASE: unsupervised discriminant subspace learning for transductive few-shot learning. In: CVPR (2022)
Lu, C., Koniusz, P.: Few-shot keypoint detection with uncertainty learning for unseen species. In: CVPR (2022)
Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006). https://doi.org/10.1007/11744047_45
Koniusz, P., Cherian, A., Porikli, F.: Tensor representations via kernel linearization for action recognition from 3d skeletons. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 37–53. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_3
Koniusz, P., Wang, L., Cherian, A.: Tensor representations for action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 44, 648–665 (2022)
Koniusz, P., Tas, Y., Porikli, F.: Domain adaptation by mixture of alignments of second-or higher-order scatter tensors. In: CVPR, vol. 2 (2017)
Tas, Y., Koniusz, P.: CNN-based action recognition and supervised domain adaptation on 3d body skeletons via kernel feature maps. In: BMVC, p. 158. BMVA Press (2018)
Zhang, H., Koniusz, P., Jian, S., Li, H., Torr, P.H.S.: Rethinking class relations: absolute-relative supervised and unsupervised few-shot learning. In: CVPR, pp. 9432–9441 (2021)
Koniusz, P., Zhang, H.: Power normalizations in fine-grained image, few-shot image and graph classification. IEEE Trans. Pattern Anal. Mach. Intell. 44, 591–609 (2022)
Zhang, S., Luo, D., Wang, L., Koniusz, P.: Few-shot object detection by second-order pooling. In: Ishikawa, H., Liu, C.-L., Pajdla, T., Shi, J. (eds.) ACCV 2020. LNCS, vol. 12625, pp. 369–387. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-69538-5_23
Yu, X., Zhuang, Z., Koniusz, P., Li, H.: 6DoF object pose estimation via differentiable proxy voting regularizer. In: BMVC, BMVA Press (2020)
Zhang, S., Wang, L., Murray, N., Koniusz, P.: Kernelized few-shot object detection with efficient integral aggregation. In: CVPR, pp. 19207–19216 (2022)
Zhang, S., Murray, N., Wang, L., Koniusz, P.: Time-rEversed DiffusioN tEnsor Transformer: a new TENET of few-shot object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision–ECCV 2022. ECCV 2022. LNCS, vol. 13680, pp. 310–328. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20044-1_18
Simon, C., Koniusz, P., Harandi, M.: On learning the geodesic path for incremental learning. In: CVPR, pp. 1591–1600 (2021)
Doersch, C., Gupta, A., Zisserman, A.: Crosstransformers: spatially-aware few-shot transfer. arXiv preprint arXiv:2007.11498 (2020)
Antoniou, A., Edwards, H., Storkey, A.: How to train your maml. arXiv preprint arXiv:1810.09502 (2018)
Oreshkin, B., Lopez, P.R., Lacoste, A.: TADAM: task dependent adaptive metric for improved few-shot learning. In: Advances in Neural Information Processing Systems, pp. 721–731 (2018)
Lee, K., Maji, S., Ravichandran, A., Soatto, S.: Meta-learning with differentiable convex optimization. In: CVPR, pp. 10657–10665 (2019)
Zhang, C., Cai, Y., Lin, G., Shen, C.: DeepEMD: few-shot image classification with differentiable earth mover’s distance and structured classifiers. In: CVPR, pp. 12203–12213 (2020)
Triantafillou, E., et al.: Meta-dataset: A dataset of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096 (2019)
Ren, M., et al.: Meta-learning for semi-supervised few-shot classification. In: ICLR (2018)
Koniusz, P., Tas, Y., Zhang, H., Harandi, M., Porikli, F., Zhang, R.: Museum exhibit identification challenge for the supervised domain adaptation and beyond. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 815–833. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_48
Nilsback, M.E., Zisserman, A.: Automated flower classification over a large number of classes. In: Proceedings of the Indian Conference on Computer Vision, Graphics and Image Processing (2008)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)
Bossard, L., Guillaumin, M., Van Gool, L.: Food-101 – mining discriminative components with random forests. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 446–461. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_29
Acknowledgements
This work is supported by National Natural Science Fundation of China (No. 62106282), and Young Elite Scientists Sponsorship Program by CAST (No. 2021-JCJQ-QT-038). Code: https://github.com/HongguangZhang/smfsl-master.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, H., Torr, P.H.S., Koniusz, P. (2023). Improving Few-shot Learning by Spatially-aware Matching and CrossTransformer. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-26348-4_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26347-7
Online ISBN: 978-3-031-26348-4
eBook Packages: Computer ScienceComputer Science (R0)