Skip to main content

Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13845))

Included in the following conference series:

Abstract

The addition of depth maps improves the performance of salient object detection (SOD). However, most existing RGB-D SOD methods are inefficient. We observe that existing models take into account the respective advantages of the two modalities but do not fully explore the roles of cross-modality features of various levels. To this end, we remodel the relationship between RGB features and depth features from a new perspective of the feature encoding stage and propose a three-stage bidirectional interaction network (TBINet). Specifically, to obtain robust feature representations, we propose three interaction strategies: bidirectional attention guidance (BAG), bidirectional feature supplement (BFS), and shared network, and use them for the three stages of feature encoder, respectively. In addition, we propose a cross-modality feature aggregation (CFA) module for feature aggregation and refinement. Our model is lightweight (3.7 M parameters) and fast (329 ms on CPU). Experiments on six benchmark datasets show that TBINet outperforms other SOTA methods. Our model achieves the best performance and efficiency trade-off.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shimoda, W., Yanai, K.: Distinct class-specific saliency maps for weakly supervised semantic segmentation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 218–234. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_14

    Chapter  Google Scholar 

  2. Zeng, Y., Zhuge, Y., Lu, H., Zhang, L.: Joint learning of saliency detection and weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7223–7233 (2019)

    Google Scholar 

  3. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. In: International Conference on Machine Learning, pp. 597–606. PMLR (2015)

    Google Scholar 

  4. Mahadevan, V., Vasconcelos, N.: Saliency-based discriminant tracking. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1007–1013. IEEE (2009)

    Google Scholar 

  5. Guo, C., Zhang, L.: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans. Image Process. 19(1), 185–198 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Ji, Q.G., Fang, Z.D., Xie, Z.H., Lu, Z.M.: Video abstraction based on the visual attention model and online clustering. Signal Process. Image Commun. 28(3), 241–253 (2013)

    Article  Google Scholar 

  7. Cheng, M.M., Hou, Q.B., Zhang, S.H., Rosin, P.L.: Intelligent visual media processing: when graphics meets vision. J. Comput. Sci. Technol. 32(1), 110–121 (2017)

    Article  Google Scholar 

  8. Fan, D.-P., Zhai, Y., Borji, A., Yang, J., Shao, L.: BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 275–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_17

    Chapter  Google Scholar 

  9. Jin, W.D., Xu, J., Han, Q., Zhang, Y., Cheng, M.M.: CDNet: complementary depth network for RGB-D salient object detection. IEEE Trans. Image Process. 30, 3376–3390 (2021)

    Article  Google Scholar 

  10. Liu, Z., Wang, Y., Tu, Z., Xiao, Y., Tang, B.: TritransNet: RGB-D salient object detection with a triplet transformer embedding network. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4481–4490 (2021)

    Google Scholar 

  11. Luo, A., Li, X., Yang, F., Jiao, Z., Cheng, H., Lyu, S.: Cascade graph neural networks for RGB-D salient object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 346–364. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_21

    Chapter  Google Scholar 

  12. Piao, Y., Rong, Z., Zhang, M., Ren, W., Lu, H.: A2Dele: adaptive and attentive depth distiller for efficient RGB-D salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9060–9069 (2020)

    Google Scholar 

  13. Zhou, T., Fu, H., Chen, G., Zhou, Y., Fan, D.P., Shao, L.: Specificity-preserving RGB-D saliency detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4681–4691 (2021)

    Google Scholar 

  14. Li, G., Liu, Z., Chen, M., Bai, Z., Lin, W., Ling, H.: Hierarchical alternate interaction network for RGB-D salient object detection. IEEE Trans. Image Process. 30, 3528–3542 (2021)

    Article  Google Scholar 

  15. Zhang, W., Ji, G.P., Wang, Z., Fu, K., Zhao, Q.: Depth quality-inspired feature manipulation for efficient RGB-D salient object detection. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 731–740 (2021)

    Google Scholar 

  16. Zhang, W., Jiang, Y., Fu, K., Zhao, Q.: BTS-Net: bi-directional transfer-and-selection network for RGB-D salient object detection. In: 2021 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2021)

    Google Scholar 

  17. Zhang, C., et al.: Cross-modality discrepant interaction network for RGB-D salient object detection. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2094–2102 (2021)

    Google Scholar 

  18. Fu, K., Fan, D.P., Ji, G.P., Zhao, Q., Shen, J., Zhu, C.: Siamese network for RGB-D salient object detection and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 44, 5541–5559 (2021)

    Google Scholar 

  19. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_8

    Chapter  Google Scholar 

  20. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  21. Desingh, K., Krishna, K.M., Rajan, D., Jawahar, C.: Depth really matters: Improving visual salient region detection with depth. In: BMVC, pp. 1–11 (2013)

    Google Scholar 

  22. Feng, D., Barnes, N., You, S., McCarthy, C.: Local background enclosure for RGB-D salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2343–2350 (2016)

    Google Scholar 

  23. Lang, C., Nguyen, T.V., Katti, H., Yadati, K., Kankanhalli, M., Yan, S.: Depth matters: influence of depth cues on visual saliency. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 101–115. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_8

    Chapter  Google Scholar 

  24. Ren, J., Gong, X., Yu, L., Zhou, W., Ying Yang, M.: Exploiting global priors for RGB-D saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 25–32 (2015)

    Google Scholar 

  25. Chen, Q., Liu, Z., Zhang, Y., Fu, K., Zhao, Q., Du, H.: RGB-D salient object detection via 3d convolutional neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 1063–1071 (2021)

    Google Scholar 

  26. Ji, W., et al.: Calibrated RGB-D salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9471–9481 (2021)

    Google Scholar 

  27. Sun, P., Zhang, W., Wang, H., Li, S., Li, X.: Deep RGB-D saliency detection with depth-sensitive attention and automatic multi-modal fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1407–1417 (2021)

    Google Scholar 

  28. Zhang, M., Fei, S.X., Liu, J., Xu, S., Piao, Y., Lu, H.: Asymmetric two-stream architecture for accurate RGB-D saliency detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 374–390. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_23

    Chapter  Google Scholar 

  29. Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks. IEEE Trans. Neural Netw. Learn. Syst. 32(5), 2075–2089 (2020)

    Article  Google Scholar 

  30. Li, C., Cong, R., Piao, Y., Xu, Q., Loy, C.C.: RGB-D salient object detection with cross-modality modulation and selection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 225–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_14

    Chapter  Google Scholar 

  31. Zhou, T., Fan, D.P., Cheng, M.M., Shen, J., Shao, L.: RGB-D salient object detection: a survey. Comput. Visual Med. 7(1), 37–69 (2021)

    Article  Google Scholar 

  32. Wang, W., Lai, Q., Fu, H., Shen, J., Ling, H., Yang, R.: Salient object detection in the deep learning era: an in-depth survey. IEEE Trans. Pattern Anal. Mach. Intell. 44, 3239–3259 (2021)

    Article  Google Scholar 

  33. Zhao, X., Zhang, L., Pang, Y., Lu, H., Zhang, L.: A single stream network for robust and real-time RGB-D salient object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 646–662. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_39

    Chapter  Google Scholar 

  34. Chen, S., Fu, Y.: Progressively guided alternate refinement network for RGB-D salient object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 520–538. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_31

    Chapter  Google Scholar 

  35. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  36. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2: Inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  37. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  38. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  39. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  40. Wu, Y.H., Liu, Y., Xu, J., Bian, J.W., Gu, Y.C., Cheng, M.M.: MobileSal: extremely efficient RGB-D salient object detection. IEEE Trans. Pattern Anal. Mach. Intell. 44, 10261–10269 (2021). https://doi.org/10.1109/TPAMI.2021.3134684

    Article  Google Scholar 

  41. Li, G., Liu, Z., Ye, L., Wang, Y., Ling, H.: Cross-modal weighting network for RGB-D salient object detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 665–681. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_39

    Chapter  Google Scholar 

  42. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  43. Liu, S., Huang, D., Wang, Y.: Receptive field block net for accurate and fast object detection. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 404–419. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_24

    Chapter  Google Scholar 

  44. Wei, J., Wang, S., Huang, Q.: F\(^3\)net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 12321–12328 (2020)

    Google Scholar 

  45. Niu, Y., Geng, Y., Li, X., Liu, F.: Leveraging stereopsis for saliency analysis. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 454–461. IEEE (2012)

    Google Scholar 

  46. Ju, R., Ge, L., Geng, W., Ren, T., Wu, G.: Depth saliency based on anisotropic center-surround difference. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 1115–1119. IEEE (2014)

    Google Scholar 

  47. Peng, H., Li, B., Xiong, W., Hu, W., Ji, R.: RGBD salient object detection: a benchmark and algorithms. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 92–109. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_7

    Chapter  Google Scholar 

  48. Zhu, C., Li, G.: A three-pathway psychobiological framework of salient object detection using stereoscopic technology. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 3008–3014 (2017)

    Google Scholar 

  49. Cheng, Y., Fu, H., Wei, X., Xiao, J., Cao, X.: Depth enhanced saliency detection method. In: Proceedings of International Conference on Internet Multimedia Computing and Service, pp. 23–27 (2014)

    Google Scholar 

  50. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. IEEE (2009)

    Google Scholar 

  51. Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence, pp. 698–704 (2018)

    Google Scholar 

  52. Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)

    Google Scholar 

  53. Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740. IEEE (2012)

    Google Scholar 

  54. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  55. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances In Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  56. Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhang, J., et al.: UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8582–8591 (2020)

    Google Scholar 

  58. Liu, N., Zhang, N., Han, J.: Learning selective self-mutual attention for RGB-D saliency detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13756–13765 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1970 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Zhang, Y. (2023). Three-Stage Bidirectional Interaction Network for Efficient RGB-D Salient Object Detection. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26348-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26347-7

  • Online ISBN: 978-3-031-26348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics