Abstract
One fundamental limitation to the research of bird strike prevention is the lack of a large-scale dataset taken directly from real-world airports. Existing relevant datasets are either small in size or not dedicated for this purpose. To advance the research and practical solutions for bird strike prevention, in this paper, we present a large-scale challenging dataset AirBirds that consists of 118,312 time-series images, where a total of 409,967 bounding boxes of flying birds are manually, carefully annotated. The average size of all annotated instances is smaller than 10 pixels in 1920\(\times \)1080 images. Images in the dataset are captured over 4 seasons of a whole year by a network of cameras deployed at a real-world airport, covering diverse bird species, lighting conditions and 13 meteorological scenarios. To the best of our knowledge, it is the first large-scale image dataset that directly collects flying birds in real-world airports for bird strike prevention. This dataset is publicly available at https://airbirdsdata.github.io/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Berg, T., Liu, J., Lee, S.W., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N.: Birdsnap: large-scale fine-grained visual categorization of birds. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848
Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)
Ge, Z., et al.: Exploiting temporal information for DCNN-based fine-grained object classification. In: International Conference on Digital Image Computing: Techniques and Applications (2016)
Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: Learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90
Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, Tech. Rep. (2009)
Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45
Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Redmon, J.: Darknet: Open source neural networks in c. http://pjreddie.com/darknet/ (2013-2016)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91
Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019). https://proceedings.mlr.press/v97/tan19a.html
Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)
Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)
Ultralytics: YOLOv5. https://github.com/ultralytics/yolov5 (2021)
Van Horn, G.: Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology (2011)
Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)
Welinder, P., et al.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation for object detection. In: The IEEE International Conference on Computer Vision (ICCV) (2019)
Yoshihashi, R., Kawakami, R., Iida, M., Naemura, T.: Construction of a bird image dataset for ecological investigations. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4248–4252 (2015). https://doi.org/10.1109/ICIP.2015.7351607
Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors for visual object detection. In: Neural Information Processing Systems (2019)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)
Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. arXiv preprint arXiv:1811.11168 (2018)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=gZ9hCDWe6ke
Acknowledgements
We thank all members who involved in the system deploying, data collecting, processing and labeling. This work was supported in part by the National Natural Science Foundation of China (Grant No. 61972404, 12071478).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, H. et al. (2023). AirBirds: A Large-scale Challenging Dataset for Bird Strike Prevention in Real-world Airports. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_24
Download citation
DOI: https://doi.org/10.1007/978-3-031-26348-4_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26347-7
Online ISBN: 978-3-031-26348-4
eBook Packages: Computer ScienceComputer Science (R0)