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Abstract. One fundamental limitation to the research of bird strike pre-
vention is the lack of a large-scale dataset taken directly from real-world
airports. Existing relevant datasets are either small in size or not dedi-
cated for this purpose. To advance the research and practical solutions
for bird strike prevention, in this paper, we present a large-scale challeng-
ing dataset AirBirds that consists of 118,312 time-series images, where
a total of 409,967 bounding boxes of flying birds are manually, carefully
annotated. The average size of all annotated instances is smaller than
10 pixels in 1920x1080 images. Images in the dataset are captured over
4 seasons of a whole year by a network of cameras deployed at a real-
world airport, covering diverse bird species, lighting conditions and 13
meteorological scenarios. To the best of our knowledge, it is the first
large-scale image dataset that directly collects flying birds in real-world
airports for bird strike prevention. This dataset is publicly available at
https://airbirdsdata.github.io/.

Keywords: Large-scale Dataset · Bird Detection in Airport · Bird Strike
Prevention.

1 Introduction

Bird strike accidents cause not only financial debts but also human casualties.
According to Federal Aviation Administration (FAA) 1, from 1990 to 2019, there
have been more than 220 thousand wildlife strikes with civil aircraft in USA alone
and 97% of all strikes involve birds. An estimated economic loss could be as high
as $500 million per year. Furthermore, more than 200 human fatalities and 300
injuries attributed to bird strikes. Bird strikes happen most near or at airports
during takeoff, landing and associated phrases. About 61% of bird strikes with
civil aircraft occur during landing phases of flight (descent, approach and landing
roll). 36% occur during takeoff run and climb2. It is the airspace that the airport
should be responsible for so that the prevention of bird strikes is one of the most
significant safety concerns. Although various systems are designed for preventing

1 https://www.faa.gov/airports/airport_safety/wildlife/faq/
2 https://en.wikipedia.org/wiki/Bird_strike
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(a) camera deployment alongside a runway in a real-world airport

(b) AirBirds (c) Relevant Datasets

Fig. 1: (a) The deployment of a network of cameras in a real-world airport (b)
A bird example in AirBirds (c) Examples of birds in CUB[27,25], Birdsnap[1],
NABirds[24] and CIFAR10[10].

bird strikes, accidents keep occurring with increasing commercial activities and
flights. Improving the performances of bird strike prevention systems remains
a research challenge. One fundamental limitation to the performances is the
lack of large-scale data collected at real-world airports. On the one hand, real-
world airports have strict rules on security and privacy regarding camera system
deployment. On the other hand, it is inevitably expensive to develop a large-scale
dataset that involves a series of time-consuming and laborious tasks.

Existing relevant datasets are either small in size or not dedicated for bird
strike prevention. The wildlife strike database created by FAA provides valu-
able information, while each record in this database only contains a few fields
in text form, such as date and time, aircraft and airport information, environ-
ment conditions, lacking informative pictures and videos. The relevant dataset
developed by Yoshihashi et al aims at preventing birds from hitting the blades of
turbines in a wind farm [29], rather than in real-world airports, and its size is less
than one seventh of ours. Well-known datasets like ImageNet [5], COCO [14],
VOC [6], CIFAR [10] collects millions of common objects and animals, includ-
ing birds, but they are developed for the research of general image recognition,
object detection and segmentation. Another branch of datasets, such as CUB
series [27,25], Birdsnap [1] and NABirds [24] containing hundreds of bird species,
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focus on fine-grained categorization and part localization. And the size of these
datasets is less than 50% of ours. One of the most significant differences be-
tween the above-mentioned datasets and ours is that birds in previous datasets
are carefully selected and tailored, which means they are often centered in the
image, occupy the main part of an image and have clear outlines, referring to
Fig. 1c.

However, it is unlikely that birds in the images captured in real-world airports
have these idealized characteristics. The deployment of a network of cameras
around a runway in a real-world airport is shown in Fig. 1a. Each camera is
responsible for monitoring an area of hundreds of meters so that flying birds
that appear are tiny in size even in a high-resolution image. For example, in our
dataset, the average size of all annotated birds is smaller than 10 pixels in the
1920×1080 images, taking up only ∼0.5% of the image width, shown in Fig. 1b.

To advance the research and practical solutions for bird strike prevention, we
collaborate with a real-world airport for two years and finally present AirBirds,
a large-scale challenging dataset consisting of 118,312 time-series images with
1920×1080 resolution and 409,967 bounding box annotations of flying birds. The
images are extracted from videos recorded by a network of cameras over one year,
from September 2020 to August 2021, thus cover various bird species in different
seasons. Diverse scenarios are also included in AirBirds, e.g., changing lighting
and 13 meteorological conditions. Planning, deployment and joint commissioning
of the monitoring system last for one year. The data collection process takes
another whole year and subsequent cleaning, labeling, sorting and experimental
analysis consume parallel 12 months. To the best of our knowledge, AirBirds
is the first large-scale challenging image dataset that collects flying birds in
real airports for bird strike prevention. The core contributions of this paper are
summarized as follows.

– A large-scale dataset, namely AirBirds, that consists of 118,312 time-series
images with 1920×1080 resolution containing flying birds in real-world air-
ports is publicly presented, where there exist 409,967 instances with carefully
manual bounding box annotations. The dataset covers various kinds of birds
in 4 different seasons and diverse scenarios that include day and night, 13
meteorological and lighting conditions, e.g., overcast, sunny, cloudy, rainy,
windy, haze, etc.

– To reflect significant differences with other relevant datasets, we make com-
prehensive statistics on AirBirds and compare it with relevant datasets.
There are three appealing features. (i) The images in AirBirds are dedicat-
edly taken from a real-world airport, which provide rare first-hand sources
for the research of bird strike prevention. (ii) Abundant bird instances in
different seasons and changing scenarios are also covered by AirBirds as the
data collection spans a full year. (iii) The distribution of AirBirds is dis-
tinctive with existing datasets since 88% of instances are smaller than 10
pixels, and the remaining 12% are more than 10 and less than 50 pixels in
1920×1080 images.
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Table 1: Comparisons of AirBirds and relevant datasets. Density is the average
instances in each image. Duration refers to the period of data collection.

Dataset Format #Images Resolution #Instances Density Duration

FAA Database text - - 227,005 - 30 years
CUB-200-2010 [27] image 6,033 ∼500×300 6,033 1.00 -
CUB-200-2011 [25] image 11,788 ∼500×300 11,788 1.00 -
Birdsnap [1] image 49,829 various ∼49,829 1.00 -
NABirds [24] image 48,562 various ∼48,562 1.00 -
Wind Farm [29] image 16,200 ∼5616×3744 32,000 1.97 3 days
VB100 [7] video - ∼848×464 1,416 - -

AirBirds image 118,312 1920×1080 409,967 3.47 1 year

– To understand the difficulty of AirBirds, a wide range of strong baselines
are evaluated on this dataset for bird discovering. Specifically, 16 detectors
are trained from scratch based on AirBirds with careful configurations and
parameter optimization. The consistently unsatisfactory results reveal the
non-trivial challenges of bird discovering and bird strike prevention in real-
world airports, which deserve further investigation.

As far as we know, bird strike prevention remains a open research problem since
it is not well solved by existing technologies. We believe AirBirds will benefit
the researchers, facilitate the research field and push the boundary of practical
solutions in real-world airports.

2 Related Work

In this section, we review the datasets that are either closely relevant to bird
strike prevention or contain transferrable information to this topic.

FAA Wildlife Strike Database. One of the most relevant datasets is
the Wildlife Strike Database3 maintained by FAA. This database contains more
than 220K records of reported wildlife strikes since 1990 and 97% of strikes
attribute to birds. The detailed descriptions for each incident can be divided
into the following parts: bird species, date and time, airport information, aircraft
information, environment conditions, etc. An obvious limitation is the contents
in this database are mainly in text form, lacking informative pictures and videos.

Bird Dataset of a Wind Farm. Yoshihashi et al develop this dataset for
preventing birds striking the blades of the turbines in a wind farm [29]. 32,000
birds and 4,900 non-birds are annotated in total to conduct experiments of a
two-class categorization. It is similar to us that the ratio of bird size and the
image size is extremely small. However, compared to AirBirds’ data collection
process spanning a whole year, this dataset collects images only for 3 days so
that the number of samples and scenarios are much less than those of AirBirds.

3 https://wildlife.faa.gov

https://wildlife.faa.gov
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Fig. 2: The number of images per month in AirBirds.

Bird Datasets with Multiple Species. Bird species probably provide
valuable information for bird strike prevention. Another branch of the relevant
datasets, such as CUB series [27,25], Birdsnap [1], NABirds [24] and VB100 [7],
focuses on fine-grained categorization of bird species. Images in these datasets
are mainly collected from public sources, e.g., Flickr 4, or by professionals. One of
the most significant differences between the datasets in this branch and AirBirds
is that birds in these datasets are carefully tailored, which means they are often
centered in the image, occupy the main part and have clear outlines. However,
it is unlikely for birds captured in real-world airports to have these wonderful
characteristics. Moreover, bounding box annotations are absent in some of them,
e.g., VB100 [7], thus they are not suitable for the research of tiny bird detection.

Well-Known Datasets Containing Birds. Commonly used datasets in
computer vision are also relevant as the bird belongs to one of the predefined
categories in those datasets and there exist numbers of samples, such as Im-
ageNet [5], COCO [14], VOC [6], CIFAR [10]. However, the above-mentioned
datasets are dedicatedly designed for the research of general image classifica-
tion, object detection and segmentation, not for bird strike prevention. And
their data distributions differ from AirBirds, thus limited information can be
transferred to this task.

The comparisons with related work are summarized in Tab. 1. AirBirds offers
the most instances, the longest duration and the richest scenarios in image form.

4 https://www.flickr.com/search/?text=bird

https://www.flickr.com/search/?text=bird
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3 AirBirds Construction

This section describes the process of constructing the AirBirds dataset, includ-
ing raw data collection, subsequent cleaning, annotation, splits and sorting to
complete it.

3.1 Collection

To cover diverse scenarios and prepare adequate raw data, we decide to record in
a real-world airport (Shuangliu International Airport, Sichuan Province, China)
over 4 seasons of a whole year. The process of data collection starts from Septem-
ber 2020 and ends in August 2021.

Considering frequent takeoffs and landings, airport runways and their sur-
roundings are major monitoring areas. We deployed a network of high-resolution
cameras along the runways, as Fig. 1a shows. All deployed cameras use identi-
cal configurations. The camera brand is AXIS Q1798-LE5, recording 1920×1080
images at a frame rate of 25. Due to the vast volume of raw data but a limited
number of disks, it is infeasible to save all videos. We split into two parallel
groups, one group for data collection and the other for data processing, so disk
spaces can be recycled once the second group finishes data processing.

3.2 Preprocessing

This step aims to process raw videos month by month and save 1920×1080 im-
ages in chronological order. 25 frames per second in raw videos lead to numerous
redundant images. To avoid dense distribution of similar scenarios, a suitable
sampling strategy is required. One crucial observation is that the video clips
where flying birds appear are very sparse compared to other clips. Hence, at
first, we manually locate all clips where there exist birds, then sample one every
5 continuous frames in previously selected clips instead of all of them, resulting
in an average of 300+ images per day, ∼10000 images per month, 118,312 in
total. The number of images per month is shown in Fig. 2 and 13 meteorological
conditions and the corresponding number of days are depicted in Fig. 3.

3.3 Annotation

To ensure quality and minimize costs, we divide the labeling process into three
rounds. The first round that generates initial bounding box annotations for birds
in the images is done by machines. The second round refines previous annotations
manually by a team of employed workers. It should be noted that the team does
not have to discover birds from scratch. In the third round, we are responsible
for verifying those manual annotations and requiring further improvements of
low-quality instances.

5 https://www.axis.com/products/axis-q1798-le

https://www.axis.com/products/axis-q1798-le
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Fig. 3: The number of days of different weather in AirBirds.

It is not a simple task for humans to discover tiny birds from collected images
with broad scenes. In the first round, we develop an algorithm for generating
initial annotations and run on a computer. The idea of this algorithm is related
to background subtraction in image processing. In our context, cameras are
fixed in real-world airports, thus the background is static in the monitoring
views. Since the images in each sequence are in chronological order, considering
two consecutive frames, by computing the pixel differences between the first
and second frame, the static part, namely the background, is removed while
other moving targets, such as flying birds in the monitoring areas, are probably
discovered. Alg. 1 describes the detailed process. Initially, we treat the first frame
as background, convert it to gray mode, apply Gaussian blur6 to this gray image,
and denote the output image as b, then remove the first image from the input
sequence S. The set of initial bounding box annotations B is empty. Then we
traverse the image Ii in S. In the loop, Ii is also converted to gray image gi. After
that, Gaussian blur is applied to gi to generate a denoised image ci. Then we
compute differences between b and ci, resulting in d. Fourth, regions in d whose
pixel values are in the range of [min, max] are considered as areas of interest, e.g.,
if the pixel differences of the same area in those 2 consecutive frames are more
than 30, there probably are moving targets in this area. The dilation operation
is applied to those areas to expand contours for finding possible moving objects
ci, including flying birds. After that, heuristic rules are used to filter candidates
according to the object size, e.g., big targets like airplanes, working vehicles,
workers, are removed, resulting in bi. Then bi is inserted into B. Finally, we
set background b as ci and move forward. The key steps of this algorithm are
visualized in Fig. 4.

Refinement is required since previously discovered moving objects are not
necessarily birds. In the second round, we cooperate with a team of workers
to accomplish the task. According to the predefined instructions, every single
image should be zoomed in to 250+% to check the initial annotations in detail

6 https://en.wikipedia.org/wiki/Gaussian_blur

https://en.wikipedia.org/wiki/Gaussian_blur
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Algorithm 1 The First Round of Annotations

Input: S = {I1, I2, . . . , In}, an image sequence, where n is the sequence length.
Constants min and max

Output: B = {b1,b2, . . . ,bn}, the bounding boxes set for birds in S, where
bi = {b1i , b2i , . . . , bmi }, m is the number of detected birds in image Ii

1: g ← imRead(I1, 0) . read image in gray mode
2: b ← gaussBlur(g) . denoise the image
3: S ← S \ I1 . remove I1 from S
4: B ← ∅ . initialize B
5: for Ii in S do
6: gi ← imRead(Ii, 0)
7: ci ← gaussBlur(gi)
8: d ← Diff(b, ci) . compute differences
9: d ← Thresh(d, min, max) . apply threshold

10: di ← Dilate(d) . dilate areas further
11: ci ← findContours(di) . find candidates
12: bi ← Filter(ci) . filter candidates
13: B ← B ∪ bi . insert annotations
14: b← ci . move background next
15: end for

and the team mainly handles 3 types of issues that arose in the first round (i) add
missed annotations, (ii) delete false-positive annotations, (iii) update inaccurate
annotations. In the third round, we go through the annotations refined by the
team, requiring further improvements where inappropriate.

3.4 Splits

To facilitate further explorations of bird strike prevention based on this dataset,
it is necessary to split AirBirds into training and test set.

We need to pay attention to three key aspects when splitting the dataset.
First, we should keep a proper ratio between the size of the training and the test
set. Second, it is essential to ensure training and test sets have a similar distri-
bution. Third, considering the characteristic of chronological order, we should
put a complete sequence into either the training or the test set rather than split
it into different sets.

At last, we divide 98,312 images into the training set and keep the remain-
ing 20,000 images in the test set, a nearly 5:1 ratio. All images and labels are
publicly available, but excluding the labels in the test set. The validation set is
not explicitly distinguished as the primary evaluation should take place on the
test set, and users can customize the ratio between training and validation set
individually. We are actively building an evaluation server and the labels in the
test will be kept there.

In addition, the images in AirBirds can also be divided into 13 groups ac-
cording to 13 kinds of scenarios shown in Fig. 3. This division is easy to achieve
since each image is recorded on a specific day and each day corresponds to one
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① imRead & gaussBlur  ② Diff & Thresh & Dilate

③ findContours               ④ Enlarge

the first frame

the second frame

①

①

② ③

④

Fig. 4: Visualization of key steps in Alg. 1.

type of meteorological condition, according to the official weather report. Based
on the division, we can evaluate the difficulty of bird discovering in different
scenarios in real-world airports.

4 Experiments

In this section, a series of comprehensive statistics and experiments based on
AirBirds are presented. First, we investigate the data distribution in AirBirds
and compare with relevant datasets to reflect their significant differences. Second,
a wide range of SOTA detectors are evaluated on the developed dataset for
bird discovering and the results are analyzed in detail to understand the non-
trivial challenges of bird strike prevention. Third, the effectiveness of Alg. 1 is
evaluated since it plays an important role in the first round of annotations when
constructing AirBirds.

4.1 Distribution

In this subsection, we investigate the distribution of AirBirds and compare with
relevant datasets. Figure 5 shows the distibution of width and height of bounding
box in different datasets. Obviously, objects in AirBirds have much smaller sizes.
Further, Fig. 6 depicts the proportion of objects with various sizes in relevant
datasets. 88% of all instances in AirBirds are smaller than 10 pixels and the
rest 12% are mainly in the interval [10, 50). Therefore, data distribution in real-
world airports is significantly different from that in web-crawled and tailor-made
datasets.

4.2 Configurations

A wide range of detectors are tested on AirBirds for bird discovering. Before
reporting their performances, it is necessary to elaborate on the specific mod-
ifications we made to accommodate the AirBirds dataset and the detectors.
Concretely, we customize the following settings.
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(a) COCO (b) AirBirds

Fig. 5: Distributions of width and height of annotated instances in COCO and
AirBirds.

Models. To avoid AirBirds preferring a certain type of detectors, various
kinds of strong baselines are picked for evaluation, including one-stage, multi-
stage, transformer-based, anchor-free, and other types of models, referring to
Tab. 2.

Devices. 6 NVIDIA RTX 2080Ti GPUs are used during training and a single
GPU device is used during test for all models.

Data Format. The format of annotations in AirBirds is consistent with
YOLO [16] style. Then we convert them to COCO format when training models
other than YOLOv5.

Anchor Ratios and Scales. We need to adapt the ratios and scales for
anchor-based detectors to succeed in custom training because objects in AirBirds
have notable differences in size with that in the commonly used COCO dataset.
The k-means clustering is applied to the labels of AirBirds, finally the ratios are
set to [ 8

13 , 9
12 , 11

9 ] and the scales are set to [20, 2
1
3 , 2

2
3 ].

Learning Schedules. All models are trained from scratch with optimized
settings, e.g., training epochs, learning rate, optimizer, batch size, etc. We sum-
marize these settings in Section 2 in the supplementary material.

Alg. 1. The thresholds of pixel differences in Alg. 1, min and max, are set
to 25 and 255, respectively.

4.3 Results and Analysis

Both accuracy and efficiency are equivalently important for bird discovering in
a real-world airport. The accuracy is measured by average precision (AP) and
the efficiency is judged by frames per second (FPS). Results are recorded in
Tab. 2.
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88
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14

12
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49

61

0

84
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Fig. 6: Comparisons of the ratio of the number of objects with different sizes in
the datasets Birdsnap, COCO, VOC and AirBirds. The numbers in each bar are
in %. Here the object size in pixel level is divided into 4 intervals: (0,10), [10,50),
[50, 300) and [300,+∞).

For accuracy, the primary metric AP seems unsatisfactory, e.g., the highest
score achieved by YOLOv5 is only 11.9, and the scores of all other models are
less than 10. We also compare the performances of those detectors on COCO and
AirBirds, shown in Fig. 7. Under the same detector, however, the performance
gap is surprisingly large. For instance, the AP score of EfficientDet-D2 on COCO
exceeds the one on AirBirds by 41.5(=42.1-0.6).

Besides, precision-recall relationship are also investigated, and results are
shown in Fig. 8. The trend in all curves is that precision decreases with increased
recall because more and more false-positive birds produce as more and more birds
are recalled. YOLOv5 outperforms others while precision drops to 0 when recall
reaches 0.7.

At this point, we wonder whether these detectors are well trained on AirBirds.
Hence, their training losses are visualized in Fig. 9. We observe the losses of
all detectors drop rapidly in the initial rounds of iterations, then progressively
become smooth, indicating the training process is normal and converges to the
target.

In terms of efficiency, YOLOv5 also outperforms others, surpassing 100 FPS
on a 2080Ti GPU. However, most of detectors fail to operate in real-time
efficiency even with GPU acceleration, which deviates a key principle of bird
strike prevention.

We also wonder why a wide range of detectors work poorly on AirBirds.
Reasons are detailed in Section 3 in the supplementary material due to space
limitation.

In short, existing strong detectors show decent performances on commonly
used datasets e.g. COCO, VOC etc. However, even with carefully customized
configurations, they have room for significant improvements when validating on
AirBirds. The results also imply the non-trivial challenges of the research of bird
strike prevention in real-world airports, where AirBirds can serve as a valuable
benchmark.
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Table 2: Comparisons of various kinds of object detectors on AirBirds test set.
The column APl has been removed as there are few large objects in AirBirds
and the corresponding scores are all 0. EffiDet: EfficientDet-D2, Faster: Faster
RCNN, Cascade: Cascade RCNN, Deform: Deformable DETR. These abbrevia-
tions have the same meaning in the following figure or table.

Method Type Backone AP AP@50 AP@75 APs APm FPS

FCOS[22] ResNet50[9] 0.3 1.3 0.0 0.3 0.2 18.5
EffiDet[21]

one-stage
EffiNet-B2[20] 0.6 1.0 1.0 0.6 4.3 4.88

YOLOv3[17] DarkNet53[15] 5.8 24.1 1.4 5.8 6.8 19.5
YOLOv5[23] CSPNet[26] 11.9 49.5 - - - 109.9

Faster[18]
multi-stage ResNet50[9]

7.1 26.9 1.3 7.1 0.2 16.0
Cascade[2] 6.8 24.0 1.8 6.8 1.8 13.4

DETR[3]
transformer ResNet50[9]

0.0 0.0 0.0 0.0 0.0 19.7
Deform[33] 0.4 2.2 0.0 0.4 1.0 11.6

FPN[12]
FPN RetinaNet

[13] 2.9 12.5 0.3 2.9 8.0 21.3
NASFPN[8] 3.0 12.5 0.4 2.9 15.8 25.0

RepPoints[28]
anchor-free

ResNet50[31] 4.8 22.6 0.3 4.9 0.0 37.1
CornerNet[11] HourglassNet 4.5 19.5 0.6 5.0 2.5 5.5
FreeAnchor[30] ResNet101[9] 6.6 26.5 1.1 6.7 9.0 53.5

HRNet[19] high-resolution HRNet[19] 8.9 33.0 1.3 9.0 0.3 21.7
DCN[4]

deformable
ResNet50[9] 9.7 34.6 1.8 9.8 2.4 41.9

DCNv2[32] ResNet50[9] 4.2 17.5 0.5 4.6 0.0 14.2

4.4 Effectiveness of the First Round of Annotations

As mentioned in Section. 3, Alg. 1 provides the first round of bounding box anno-
tations for possible flying birds and the annotations are saved. Here we validate
its effectiveness and compare it with the best performing YOLOv5. Different
from average precision that sets strict IoU thresholds between detections and
groundtruth, actually precision, recall and f1 score are more meaningful metrics
for evaluating initial annotations.

Table 3 shows Alg. 1 recalls more than 95% of birds in the initial round,
which saves workers numerous efforts of discovering birds in subsequent rounds
from scratch thus save costs. In addition, the results indicate that sequence
information is helpful for tiny flying birds detection as the input images in Alg. 1
are in chronological order. The star symbol in the second row in Tab. 3 means the
results of Alg. 1 are obtained on an ordinary computer(i5 CPU, 16GB memory),
without GPU support.

5 Conclusion

In this paper, we present AirBirds, a large-scale challenging dataset for bird
strike prevention constructed directly from a real-world airport, to close the no-
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Table 3: Comparisons of Alg. 1 and YOLOv5 in terms of precision, recall and f1
score. Alg. 1 runs on a common computer and YOLOv5 is tested with a 2080Ti
GPU.

Method Precision Recall F1 FPS

YOLOv5 68.10% 55.50% 61.16% 109.89
Alg. 1 58.29% 95.91% 72.51% 67.44?

Fig. 7: Comparisons of the performances among representative detectors on Air-
Birds and COCO.

table gap of data distribution between real world and other tailor-made datasets.
Thorough statistical analysis and extensive experiments are conducted based
on the developed dataset, revealing the non-trivial challenges of bird discover-
ing and bird strike prevention in real-world airports, which deserves increasing
and further investigation, where AirBirds can serve as a first-hand and valuable
benchmark.

We believe AirBirds will alleviate the fundamental limitation of the lack of
a large-scale dataset dedicated for bird strike prevention in real-world airports,
benefit researchers and the field. In the future, we will develop advanced detectors
for flying bird discovering based on AirBirds.
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Fig. 8: Precision-Recall curves of different detectors in VOC[6] style.
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Fig. 9: Training losses of different types of detectors.
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