Skip to main content

AirBirds: A Large-scale Challenging Dataset for Bird Strike Prevention in Real-world Airports

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13845))

Included in the following conference series:

  • 490 Accesses

Abstract

One fundamental limitation to the research of bird strike prevention is the lack of a large-scale dataset taken directly from real-world airports. Existing relevant datasets are either small in size or not dedicated for this purpose. To advance the research and practical solutions for bird strike prevention, in this paper, we present a large-scale challenging dataset AirBirds that consists of 118,312 time-series images, where a total of 409,967 bounding boxes of flying birds are manually, carefully annotated. The average size of all annotated instances is smaller than 10 pixels in 1920\(\times \)1080 images. Images in the dataset are captured over 4 seasons of a whole year by a network of cameras deployed at a real-world airport, covering diverse bird species, lighting conditions and 13 meteorological scenarios. To the best of our knowledge, it is the first large-scale image dataset that directly collects flying birds in real-world airports for bird strike prevention. This dataset is publicly available at https://airbirdsdata.github.io/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.faa.gov/airports/airport_safety/wildlife/faq/.

  2. 2.

    https://en.wikipedia.org/wiki/Bird_strike.

  3. 3.

    https://wildlife.faa.gov.

  4. 4.

    https://www.flickr.com/search/?text=bird.

  5. 5.

    https://www.axis.com/products/axis-q1798-le.

  6. 6.

    https://en.wikipedia.org/wiki/Gaussian_blur.

References

  1. Berg, T., Liu, J., Lee, S.W., Alexander, M.L., Jacobs, D.W., Belhumeur, P.N.: Birdsnap: large-scale fine-grained visual categorization of birds. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  2. Cai, Z., Vasconcelos, N.: Cascade R-CNN: delving into high quality object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  3. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

  4. Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  5. Deng, J., et al.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Article  Google Scholar 

  7. Ge, Z., et al.: Exploiting temporal information for DCNN-based fine-grained object classification. In: International Conference on Digital Image Computing: Techniques and Applications (2016)

    Google Scholar 

  8. Ghiasi, G., Lin, T.Y., Le, Q.V.: NAS-FPN: Learning scalable feature pyramid architecture for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  10. Krizhevsky, A.: Learning multiple layers of features from tiny images. University of Toronto, Tech. Rep. (2009)

    Google Scholar 

  11. Law, H., Deng, J.: CornerNet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 765–781. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_45

    Chapter  Google Scholar 

  12. Lin, T.Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  14. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  15. Redmon, J.: Darknet: Open source neural networks in c. http://pjreddie.com/darknet/ (2013-2016)

  16. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  17. Redmon, J., Farhadi, A.: YOLOv3: An incremental improvement (2018)

    Google Scholar 

  18. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  19. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: CVPR (2019)

    Google Scholar 

  20. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 97, pp. 6105–6114. PMLR (2019). https://proceedings.mlr.press/v97/tan19a.html

  21. Tan, M., Pang, R., Le, Q.V.: EfficientDet: scalable and efficient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  22. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object detection. arXiv preprint arXiv:1904.01355 (2019)

  23. Ultralytics: YOLOv5. https://github.com/ultralytics/yolov5 (2021)

  24. Van Horn, G.: Building a bird recognition app and large scale dataset with citizen scientists: The fine print in fine-grained dataset collection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  25. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  26. Wang, C.Y., Liao, H.Y.M., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: Cspnet: a new backbone that can enhance learning capability of CNN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2020)

    Google Scholar 

  27. Welinder, P., et al.: Caltech-UCSD Birds 200. Tech. Rep. CNS-TR-2010-001, California Institute of Technology (2010)

    Google Scholar 

  28. Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S.: Reppoints: Point set representation for object detection. In: The IEEE International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  29. Yoshihashi, R., Kawakami, R., Iida, M., Naemura, T.: Construction of a bird image dataset for ecological investigations. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4248–4252 (2015). https://doi.org/10.1109/ICIP.2015.7351607

  30. Zhang, X., Wan, F., Liu, C., Ji, R., Ye, Q.: FreeAnchor: learning to match anchors for visual object detection. In: Neural Information Processing Systems (2019)

    Google Scholar 

  31. Zhou, X., Wang, D., Krähenbühl, P.: Objects as points (2019)

    Google Scholar 

  32. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. arXiv preprint arXiv:1811.11168 (2018)

  33. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=gZ9hCDWe6ke

Download references

Acknowledgements

We thank all members who involved in the system deploying, data collecting, processing and labeling. This work was supported in part by the National Natural Science Foundation of China (Grant No. 61972404, 12071478).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongcai Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 37129 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, H. et al. (2023). AirBirds: A Large-scale Challenging Dataset for Bird Strike Prevention in Real-world Airports. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13845. Springer, Cham. https://doi.org/10.1007/978-3-031-26348-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26348-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26347-7

  • Online ISBN: 978-3-031-26348-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics