Abstract
Magnetic resonance imaging (MRI) is widely used in clinical diagnosis. However, as a slow imaging modality, the long scan time hinders its development in time-critical applications. The acquisition process can be accelerated by types of under-sampling strategies in k-space and reconstructing images from a few measurements. To reconstruct the image, many parallel imaging methods use the coil sensitivity maps to fold multiple coil images with model-based or deep learning-based estimation methods. However, they can potentially suffer from the inaccuracy of sensitivity estimation. In this work, we propose a novel coil-agnostic attention-based framework for multi-coil MRI reconstruction which completely avoids the sensitivity estimation and performs data consistency (DC) via a sensitivity-agnostic data aggregation consistency block (DACB). Experiments were performed on the FastMRI knee dataset and show that the proposed DACB and attention module-integrated framework outperforms other deep learning-based algorithms in terms of image quality and reconstruction accuracy. Ablation studies also indicate the superiority of DACB over conventional DC methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, H., Mani, M., Jacob, M.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imaging 38(2), 394–405 (2019). https://doi.org/10.1109/TMI.2018.2865356
Ahmad, R., et al.: Plug-and-play methods for magnetic resonance imaging: using denoisers for image recovery. IEEE Signal Process. Mag. 37(1), 105–116 (2020). https://doi.org/10.1109/MSP.2019.2949470
Anuroop, S., Jure, Z., Tullie, M., Lawrence, Z., Aaron, D., K.S., D.: GrappaNet: combining parallel imaging with deep learning for multi-coil MRI reconstruction. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14303–14310 (2020). https://doi.org/10.1109/CVPR42600.2020.01432
Arvinte, M., Vishwanath, S., Tewfik, A., Tamir, J.: Deep J-Sense: accelerated MRI reconstruction via unrolled alternating optimization (2021)
Bako, S., et al.: Kernel-predicting convolutional networks for denoising Monte Carlo renderings. ACM Trans. Graph. (TOG) 36(4), 97 (2017)
Bhadra, S., Zhou, W., Anastasio, M.: Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks. Medical Imag. 2020: Phys. Med. Imag. 11312, 206–213 (2020). https://doi.org/10.1117/12.2549750
Bińkowski, M., Sutherland, D., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: International Conference on Learning Representations (2018)
Duan, J., et al.: VS-Net: variable splitting network for accelerated parallel MRI reconstruction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 713–722. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_78
Fair, M., Gatehouse, P., DiBella, E., Firmin, D.: A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance. J. Cardiovasc. Mag. Reson. 17, 68 (2015). https://doi.org/10.1186/s12968-015-0162-9
Goodfellow, I., et al.: Generative adversarial networks. Adv. Neural. Inf. Process. Syst. 27, 2672–2680 (2014)
Griswold, M., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002). https://doi.org/10.1002/mrm.10171
Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2017)
Hong, M., Yu, Y., Wang, H., Liu, F., Crozier, S.: Compressed sensing MRI with singular value decomposition-based sparsity basis. Phys. Med. Biol. 56(19), 6311–6325 (2021)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
Huang, Q., Yang, D., Wu, P., Qu, H., Yi, J., Metaxas, D.: MRI reconstruction via cascaded channel-wise attention network. In: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1622–1626 (2019). https://doi.org/10.1109/ISBI.2019.8759423
Jun, Y., Shin, H., Eo, T., Hwang, D.: Joint deep model-based MR image and coil sensitivity reconstruction network (Joint-ICNet) for fast MRI. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5270–5279 (2021)
Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations (ICLR) (2015). http://arxiv.org/abs/1412.6980
Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012). https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
Lee, D., Yoo, J., Tak, S., Ye, J.: Deep residual learning for accelerated MRI using magnitude and phase networks. IEEE Trans. Biomed. Eng. 65(9), 1985–1995 (2018)
Lingala, S., Jacob, M.: Blind compressive sensing dynamic MRI. IEEE Trans. Med. Imaging 32(6), 1132–1145 (2013)
Liu, J., Yaghoobi, M.: Fine-grained MRI reconstruction using attentive selection generative adversarial networks. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1155–1159 (2021)
Liu, R., Zhang, Y., Cheng, S., Luo, Z., Fan, X.: A deep framework assembling principled modules for CS-MRI: unrolling perspective, convergence behaviors, and practical modeling. IEEE Trans. Med. Imaging 39(12), 4150–4163 (2020). https://doi.org/10.1109/TMI.2020.3014193
Liu, Y., Liu, Q., Zhang, M., Yang, Q., Wang, S., Liang, D.: IFR-Net: Iterative feature refinement network for compressed sensing MRI. IEEE Trans. Comput. Imag. 6, 434–446 (2020)
Mao, X., Li, Q., Xie, H., Lau, R., Wang, Z., Smolley, S.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821 (2017)
Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imaging 38(1), 167–179 (2019). https://doi.org/10.1109/TMI.2018.2858752
Narnhofer, D., Hammernik, K., Knoll, F., Pock, T.: Inverse GANs for accelerated MRI reconstruction. Wavelets Spars. XVIII 11138, 111381A (2019). https://doi.org/10.1117/12.2527753
Pezzotti, N., et al.: An adaptive intelligence algorithm for undersampled knee MRI reconstruction. IEEE Access 8, 204825–204838 (2020)
Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)
Sajjadi, M., Schölkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4501–4510 (2017). https://arxiv.org/abs/1612.07919/
Schlemper, J., Caballero, J., Hajnal, J., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imaging 37(2), 491–503 (2018). https://doi.org/10.1109/TMI.2017.2760978
Schlemper, J., et al.: Data consistency networks for (calibration-less) accelerated parallel MR image reconstruction. Abstract from ISMRM 27th Annual Meeting and Exhibition (2019)
Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 64–73 (2020)
Tezcan, K., Baumgartner, C., Luechinger, R., Pruessmann, K., Konukoglu, E.: MR image reconstruction using deep density priors. IEEE Trans. Med. Imaging 38(7), 1633–1642 (2019). https://doi.org/10.1109/TMI.2018.2887072
Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)
Valsesia, D., Fracastoro, G., Magli, E.: Deep graph-convolutional image denoising. IEEE Trans. Image Process. 29, 8226–8237 (2020)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017). https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
Wang, Y., Tao, X., Qi, X., Shen, X., Jia, J.: Image inpainting via generative multi-column convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 331–340 (2018)
Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)
Ying, L., Sheng, J.: Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn. Reson. Med. 57(6), 1196–1202 (2007)
Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5
Yuan, Z., et al.: SARA-GAN: self-attention and relative average discriminator based generative adversarial networks for fast compressed sensing MRI reconstruction. Front. Neuroinform. 14, 1–12 (2020). https://doi.org/10.3389/fninf.2020.611666
Zbontar, J., et al.: FastMRI: an open dataset and benchmarks for accelerated MRI. CoRR abs/1811.08839 (2018)
Zhang, C., Liu, Y., Shang, F., Li, Y., Liu, H.: A novel learned primal-dual network for image compressive sensing. IEEE Access 9, 26041–26050 (2021). https://doi.org/10.1109/ACCESS.2021.3057621
Zhang, J., Ghanem, B.: ISTA-Net: iterative shrinkage-thresholding algorithm inspired deep network for image compressive sensing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1828–1837 (2018)
Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration WTH neural networks. IEEE Trans. Comput. Imag. 3(1), 47–57 (2017)
Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: Proceedings of the IEEE International Conference on Computer Vision (2019)
Zhu, J., Park, T., Isola, P., Efros, A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017). https://doi.org/10.1109/ICCV.2017.244
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Liu, J., Qin, C., Yaghoobi, M. (2023). Coil-Agnostic Attention-Based Network for Parallel MRI Reconstruction. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-26351-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26350-7
Online ISBN: 978-3-031-26351-4
eBook Packages: Computer ScienceComputer Science (R0)