Skip to main content

TriMix: A General Framework for Medical Image Segmentation from Limited Supervision

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

  • 459 Accesses

Abstract

We present a general framework for medical image segmentation from limited supervision, reducing the reliance on fully and densely labeled data. Our method is simple, jointly trains triple diverse models, and adopts a mix augmentation scheme, and thus is called TriMix. TriMix imposes consistency under a more challenging perturbation, i.e., combining data augmentation and model diversity on the tri-training framework. This straightforward strategy enables TriMix to serve as a strong and general learner learning from limited supervision using different kinds of imperfect labels. We conduct extensive experiments to show TriMix’s generic purpose for semi- and weakly-supervised segmentation tasks. Compared to task-specific state-of-the-arts, TriMix achieves competitive performance and sometimes surpasses them by a large margin. The code is available at https://github.com/MoriLabNU/TriMix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that the concepts of one-shot learning [22,23,24] and semi-supervised learning should be different. We borrow the phrase “one-shot” to define a more challenging semi-supervised setting where only one labeled sample is available during training.

  2. 2.

    http://medicaldecathlon.com/.

References

  1. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  2. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Google Scholar 

  3. Miyato, T., Maeda, S.I., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. In: TPAMI, vol. 41 (2018)

    Google Scholar 

  4. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NeurIPS (2017)

    Google Scholar 

  5. Sohn, K., et al.: FixMatch: simplifying semi-supervised learning with consistency and confidence. In: NeurIPS (2020)

    Google Scholar 

  6. Valvano, G., Leo, A., Tsaftaris, S.A.: Learning to segment from scribbles using multi-scale adversarial attention gates. In: TMI, vol. 40 (2021)

    Google Scholar 

  7. Zhang, K., Zhuang, X.: CycleMix: a holistic strategy for medical image segmentation from scribble supervision. In: CVPR (2022)

    Google Scholar 

  8. Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. In: MICCAI (2022)

    Google Scholar 

  9. French, G., Laine, S., Aila, T., Mackiewicz, M., Finlayson, G.: Semi-supervised semantic segmentation needs strong, varied perturbations. In: BMVC (2020)

    Google Scholar 

  10. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: CVPR (2021)

    Google Scholar 

  11. Liu, Y., Tian, Y., Chen, Y., Liu, F., Belagiannis, V., Carneiro, G.: Perturbed and strict mean teachers for semi-supervised semantic segmentation. In: CVPR (2022)

    Google Scholar 

  12. Ke, Z., Wang, D., Yan, Q., Ren, J., Lau, R.W.: Dual student: breaking the limits of the teacher in semi-supervised learning. In: ICCV (2019)

    Google Scholar 

  13. Ouali, Y., Hudelot, C., Tami, M.: Semi-supervised semantic segmentation with cross-consistency training. In: CVPR (2020)

    Google Scholar 

  14. Yu, L., Wang, S., Li, X., Fu, C.W., Heng, P.A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: MICCAI (2019)

    Google Scholar 

  15. Wang, Y., et al.: Double-uncertainty weighted method for semi-supervised learning. In: MICCAI (2020)

    Google Scholar 

  16. Luo, X., Chen, J., Song, T., Wang, G.: Semi-supervised medical image segmentation through dual-task consistency. In: AAAI (2021)

    Google Scholar 

  17. Wu, Y., Xu, M., Ge, Z., Cai, J., Zhang, L.: Semi-supervised left atrium segmentation with mutual consistency training. In: MICCAI (2021)

    Google Scholar 

  18. Xia, Y., et al.: Uncertainty-aware multi-view co-training for semi-supervised medical image segmentation and domain adaptation. Med. Image Anal. 65, 101766 (2020)

    Google Scholar 

  19. Lee, H., Jeong, W.K.: Scribble2label: Scribble-supervised cell segmentation via self-generating pseudo-labels with consistency. In: MICCAI (2020)

    Google Scholar 

  20. Zhang, K., Zhuang, X.: ShapePU: A new PU learning framework regularized by global consistency for scribble supervised cardiac segmentation. In: MICCAI (2022)

    Google Scholar 

  21. Zhou, Z.H., Li, M.: Tri-training: exploiting unlabeled data using three classifiers. Trans. Knowl. Data Eng. 17, 1529–1541 (2005)

    Google Scholar 

  22. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J.V., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: CVPR (2019)

    Google Scholar 

  23. Wang, S., et al.: LT-Net: label transfer by learning reversible voxel-wise correspondence for one-shot medical image segmentation. In: CVPR (2020)

    Google Scholar 

  24. Tomar, D., Bozorgtabar, B., Lortkipanidze, M., Vray, G., Rad, M.S., Thiran, J.P.: Self-supervised generative style transfer for one-shot medical image segmentation. In: WACV (2022)

    Google Scholar 

  25. Lee, D.H., et al.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML (2013)

    Google Scholar 

  26. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: IJCNN (2020)

    Google Scholar 

  27. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: NeurIPS (2019)

    Google Scholar 

  28. Huang, T., Sun, Y., Wang, X., Yao, H., Zhang, C.: Spatial ensemble: a novel model smoothing mechanism for student-teacher framework. In: NeurIPS (2021)

    Google Scholar 

  29. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)

    Google Scholar 

  30. Li, S., Zhang, C., He, X.: Shape-aware semi-supervised 3D semantic segmentation for medical images. In: MICCAI (2020)

    Google Scholar 

  31. Hang, W., et al.: Local and global structure-aware entropy regularized mean teacher model for 3D left atrium segmentation. In: MICCAI (2020)

    Google Scholar 

  32. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. In: TPAMI, vol. 23 (2001)

    Google Scholar 

  33. Grady, L.: Random walks for image segmentation. In: TPAMI, vol. 28 (2006)

    Google Scholar 

  34. Lin, D., Dai, J., Jia, J., He, K., Sun, J.: ScribbleSup: scribble-supervised convolutional networks for semantic segmentation. In: CVPR (2016)

    Google Scholar 

  35. Bai, W., et al.: Recurrent neural networks for aortic image sequence segmentation with sparse annotations. In: MICCAI (2018)

    Google Scholar 

  36. Ji, Z., Shen, Y., Ma, C., Gao, M.: Scribble-based hierarchical weakly supervised learning for brain tumor segmentation. In: MICCAI (2019)

    Google Scholar 

  37. Tang, M., Perazzi, F., Djelouah, A., Ayed, I.B., Schroers, C., Boykov, Y.: On regularized losses for weakly-supervised CNN segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 524–540. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_31

    Chapter  Google Scholar 

  38. Tang, M., Djelouah, A., Perazzi, F., Boykov, Y., Schroers, C.: Normalized cut loss for weakly-supervised CNN segmentation. In: CVPR (2018)

    Google Scholar 

  39. Liu, X., et al.: Weakly supervised segmentation of covid19 infection with scribble annotation on CT images. Pattern Recogn. 122, 108341 (2022)

    Google Scholar 

  40. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: AutoAugment: learning augmentation strategies from data. In: CVPR (2019)

    Google Scholar 

  41. Hataya, R., Zdenek, J., Yoshizoe, K., Nakayama, H.: Faster autoAugment: learning augmentation strategies using backpropagation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_1

    Chapter  Google Scholar 

  42. Lin, C., et al.: Online hyper-parameter learning for auto-augmentation strategy. In: ICCV (2019)

    Google Scholar 

  43. Tian, K., Lin, C., Sun, M., Zhou, L., Yan, J., Ouyang, W.: Improving auto-augment via augmentation-wise weight sharing. In: NeurIPS (2020)

    Google Scholar 

  44. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  45. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv (2017)

    Google Scholar 

  46. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  47. Kim, J., Choo, W., Jeong, H., Song, H.O.: Co-Mixup: Saliency guided joint mixup with supermodular diversity. In: ICLR (2021)

    Google Scholar 

  48. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: ICML (2019)

    Google Scholar 

  49. Olsson, V., Tranheden, W., Pinto, J., Svensson, L.: ClassMix: segmentation-based data augmentation for semi-supervised learning. In: WACV (2021)

    Google Scholar 

  50. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: ICML (2020)

    Google Scholar 

  51. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT (1998)

    Google Scholar 

  52. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 142–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_9

    Chapter  Google Scholar 

  53. Peng, J., Estrada, G., Pedersoli, M., Desrosiers, C.: Deep co-training for semi-supervised image segmentation. Pattern Recogn. 107, 107269 (2020)

    Google Scholar 

  54. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML (2017)

    Google Scholar 

  55. Chen, D.D., Wang, W., Gao, W., Zhou, Z.H.: Tri-net for semi-supervised deep learning. In: IJCAI (2018)

    Google Scholar 

  56. Zhang, T., Yu, L., Hu, N., Lv, S., Gu, S.: Robust medical image segmentation from non-expert annotations with tri-network. In: MICCAI (2020)

    Google Scholar 

  57. Yu, J., Yin, H., Gao, M., Xia, X., Zhang, X., Viet Hung, N.Q.: Socially-aware self-supervised tri-training for recommendation. In: KDD (2021)

    Google Scholar 

  58. Milletari, F., Navab, N., Ahmadi, S.: V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In: 3DV (2016)

    Google Scholar 

  59. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? Trans. Med. Imaging 37, 2514–2525 (2018)

    Google Scholar 

  60. Grandvalet, Y., Bengio, Y.: Semi-supervised learning by entropy minimization. In: NeurIPS (2004)

    Google Scholar 

  61. Zhuang, X.: Multivariate mixture model for myocardial segmentation combining multi-source images. In: TPAMI, vol. 41 (2018)

    Google Scholar 

  62. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: MICCAI (2015)

    Google Scholar 

  63. Kim, B., Ye, J.C.: Mumford-shah loss functional for image segmentation with deep learning. Trans. Image Process. 29, 1856–1866 (2019)

    Google Scholar 

  64. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)

    Google Scholar 

  65. Karimi, D., Dou, H., Warfield, S.K., Gholipour, A.: Deep learning with noisy labels: exploring techniques and remedies in medical image analysis. Med. Image Anal. 65, 101759 (2020)

    Google Scholar 

  66. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: NeurIPS (2020)

    Google Scholar 

  67. Havasi, M., et al.: Training independent subnetworks for robust prediction. In: ICLR (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Numbers 21K19898 and 17H00867 and JST CREST Grant Number JPMJCR20D5, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhou Zheng or Kensaku Mori .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1360 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, Z., Hayashi, Y., Oda, M., Kitasaka, T., Mori, K. (2023). TriMix: A General Framework for Medical Image Segmentation from Limited Supervision. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics