Skip to main content

Semi-supervised Breast Lesion Segmentation Using Local Cross Triplet Loss for Ultrafast Dynamic Contrast-Enhanced MRI

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

  • 313 Accesses

Abstract

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and its fast variant, ultrafast DCE-MRI, are useful for the management of breast cancer. Segmentation of breast lesions is necessary for automatic clinical decision support. Despite the advantage of acquisition time, existing segmentation studies on ultrafast DCE-MRI are scarce, and they are mostly fully supervised studies with high annotation costs. Herein, we propose a semi-supervised segmentation approach that can be trained with small amounts of annotations for ultrafast DCE-MRI. A time difference map is proposed to incorporate the distinct time-varying enhancement pattern of the lesion. Furthermore, we present a novel loss function that efficiently distinguishes breast lesions from non-lesions based on triple loss. This loss reduces the potential false positives induced by the time difference map. Our approach is compared to that of five competing methods using the dice similarity coefficient and two boundary-based metrics. Compared to other models, our approach achieves better segmentation results using small amounts of annotations, especially for boundary-based metrics relevant to spatially continuous breast lesions. An ablation study demonstrates the incremental effects of our study. Our code is available on GitHub (https://github.com/yt-oh96/SSL-CTL).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung, H., et al.: Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clinic. 71, 209–249 (2021)

    Google Scholar 

  2. Maicas, G., Bradley, A.P., Nascimento, J.C., Reid, I., Carneiro, G.: Pre and post-hoc diagnosis and interpretation of malignancy from breast DCE-MRI. Med. Image Anal. 58, 101562 (2019)

    Article  Google Scholar 

  3. Lauby-Secretan, B., et al.: Breast-cancer screening-viewpoint of the IARC working group. N. Engl. J. Med. 372, 2353–2358 (2015)

    Article  Google Scholar 

  4. Morgan, M.B., Mates, J.L.: Applications of artificial intelligence in breast imaging. Radiol. Clinics 59, 139–148 (2021)

    Article  Google Scholar 

  5. Ayatollahi, F., Shokouhi, S.B., Mann, R.M., Teuwen, J.: Automatic breast lesion detection in ultrafast DCE-MRI using deep learning. Med. Phys. 48, 5897–5907 (2021)

    Article  Google Scholar 

  6. Gubern-Mérida, A., et al.: Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20, 265–274 (2015)

    Article  Google Scholar 

  7. Pisano, E.D., et al.: Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology 246, 376 (2008)

    Article  Google Scholar 

  8. Onishi, N., et al.: Ultrafast dynamic contrast-enhanced breast MRI may generate prognostic imaging markers of breast cancer. Breast Cancer Res. 22, 1–13 (2020)

    Article  Google Scholar 

  9. Mus, R.D., et al.: Time to enhancement derived from ultrafast breast MRI as a novel parameter to discriminate benign from malignant breast lesions. Eur. J. Radiol. 89, 90–96 (2017)

    Article  Google Scholar 

  10. Jing, X., Dorrius, M.D., Wielema, M., Sijens, P.E., Oudkerk, M., van Ooijen, P.: Breast tumor identification in ultrafast MRI using temporal and spatial information. Cancers 14, 2042 (2022)

    Article  Google Scholar 

  11. Kuhl, C.K.: A call for improved breast cancer screening strategies, not only for women with dense breasts. JAMA Netw. Open 4, e2121492 (2021)

    Google Scholar 

  12. Mann, R.M., Kuhl, C.K., Moy, L.: Contrast-enhanced MRI for breast cancer screening. J. Magn. Reson. Imaging 50, 377–390 (2019)

    Article  Google Scholar 

  13. Abe, H., et al.: Kinetic analysis of benign and malignant breast lesions with ultrafast dynamic contrast-enhanced MRI: comparison with standard kinetic assessment. AJR Am. J. Roentgenol. 207, 1159 (2016)

    Article  Google Scholar 

  14. Kim, E.S., et al.: Added value of ultrafast sequence in abbreviated breast MRI surveillance in women with a personal history of breast cancer: a multireader study. Eur. J. Radiol. 151, 110322 (2022)

    Article  Google Scholar 

  15. Onishi, N., et al.: Differentiation between subcentimeter carcinomas and benign lesions using kinetic parameters derived from ultrafast dynamic contrast-enhanced breast MRI. Eur. Radiol. 30, 756–766 (2020)

    Article  Google Scholar 

  16. Honda, M., et al.: New parameters of ultrafast dynamic contrast-enhanced breast MRI using compressed sensing. J. Magn. Reson. Imaging 51, 164–174 (2020)

    Article  Google Scholar 

  17. Goto, M., et al.: Diagnostic performance of initial enhancement analysis using ultra-fast dynamic contrast-enhanced MRI for breast lesions. Eur. Radiol. 29, 1164–1174 (2019)

    Article  Google Scholar 

  18. Gubern-Mérida, A., et al.: Automated localization of breast cancer in DCE-MRI. Med. Image Anal. 20, 265–274 (2015)

    Article  Google Scholar 

  19. Ayatollahi, F., Shokouhi, S.B., Mann, R.M., Teuwen, J.: Automatic breast lesion detection in ultrafast DCE-MRI using deep learning. Med. Phys. 48, 5897–5907 (2021)

    Article  Google Scholar 

  20. Dalmis, M.U., et al.: Artificial intelligence-based classification of breast lesions imaged with a multiparametric breast MRI protocol with ultrafast DCE-MRI, t2, and DWI. Invest. Radiol. 54, 325–332 (2019)

    Article  Google Scholar 

  21. Oh, Y.T., Ko, E., Park, H.: TDM-stargan: Stargan using time difference map to generate dynamic contrast-enhanced MRI from ultrafast dynamic contrast-enhanced MRI. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), pp. 1–5. IEEE (2022)

    Google Scholar 

  22. Militello, C., et al.: Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomed. Signal Process. Control 71, 103113 (2022)

    Article  Google Scholar 

  23. Piantadosi, G., Sansone, M., Sansone, C.: Breast segmentation in MRI via U-Net deep convolutional neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3917–3922. IEEE (2018)

    Google Scholar 

  24. Maicas, G., Carneiro, G., Bradley, A.P., Nascimento, J.C., Reid, I.: Deep reinforcement learning for active breast lesion detection from DCE-MRI. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 665–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_76

    Chapter  Google Scholar 

  25. Zhang, J., Saha, A., Zhu, Z., Mazurowski, M.A.: Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomics. IEEE Trans. Med. Imaging 38, 435–447 (2018)

    Article  Google Scholar 

  26. Van Engelen, J.E., Hoos, H.H.: A survey on semi-supervised learning. Mach. Learn. 109, 373–440 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheplygina, V., de Bruijne, M., Pluim, J.P.: Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis. Med. Image Anal. 54, 280–296 (2019)

    Article  Google Scholar 

  28. Chen, X., Yuan, Y., Zeng, G., Wang, J.: Semi-supervised semantic segmentation with cross pseudo supervision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2613–2622 (2021)

    Google Scholar 

  29. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  30. Yu, L., Wang, S., Li, X., Fu, C.-W., Heng, P.-A.: Uncertainty-aware self-ensembling model for semi-supervised 3D left atrium segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 605–613. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_67

    Chapter  Google Scholar 

  31. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  32. Vu, T.H., Jain, H., Bucher, M., Cord, M., Pérez, P.: Advent: adversarial entropy minimization for domain adaptation in semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2517–2526 (2019)

    Google Scholar 

  33. Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, vol. 3, pp. 896. ICML (2013)

    Google Scholar 

  34. Ge, W., Huang, W., Dong, D., Scott, M.R.: Deep metric learning with hierarchical triplet loss. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 272–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_17

    Chapter  Google Scholar 

  35. Cakir, F., He, K., Xia, X., Kulis, B., Sclaroff, S.: Deep metric learning to rank. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  36. Chopra, S., Hadsell, R., LeCun, Y.: Learning a similarity metric discriminatively, with application to face verification. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR2005), vol. 1, pp. 539–546 (2005)

    Google Scholar 

  37. Do, T.T., Tran, T., Reid, I., Kumar, V., Hoang, T., Carneiro, G.: A theoretically sound upper bound on the triplet loss for improving the efficiency of deep distance metric learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  38. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

  39. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  40. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  41. Luo, X.: SSL4MIS. https://github.com/HiLab-git/SSL4MIS (2020)

  42. Oh, Y.T., Ko, E., Park, H.: SSL-CTL. https://github.com/yt-oh96/SSL-CTL (2022)

  43. Yeghiazaryan, V., Voiculescu, I.D.: Family of boundary overlap metrics for the evaluation of medical image segmentation. J. Med. Imaging 5, 1–19 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Research Foundation (NRF-2020M3E5D2A01084892), Institute for Basic Science (IBSR015- D1), Ministry of Science and ICT (IITP-2020-2018-0-01798), AI Graduate School Support Program (2019-0-00421), ICT Creative Consilience program (IITP-2020-0-01821), and Artificial Intelligence Innovation Hub (2021-0-02068).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunsook Ko or Hyunjin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, Yt., Ko, E., Park, H. (2023). Semi-supervised Breast Lesion Segmentation Using Local Cross Triplet Loss for Ultrafast Dynamic Contrast-Enhanced MRI. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics