Skip to main content

PEDTrans: A Fine-Grained Visual Classification Model for Self-attention Patch Enhancement and Dropout

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

  • 294 Accesses

Abstract

Fine-grained visual classification (FGVC) is an essential and challenging classification task in computer visual classification, aiming to identify different cars and birds. Recently, most studies use a convolutional neural network combined with an attention mechanism to find discriminant regions to improve algorithm accuracy automatically. However, the discriminant regions selected by the convolutional neural network are extensive. Vision Transformer divides the image into patches and relies on self-attention to select more accurate discriminant regions. However, the Vision Transformer model ignores the response between local patches before patch embedding. In addition, patches usually have high similarity, and they are considered redundant. Therefore, we propose a PEDTrans model based on Vision Transformer. The model has a patch enhancement module based on attention mechanism and a random similar group patch discarding module based on similarity. These two modules can establish patch local feature relationships and select patches that are easier to distinguish between images. Combining these two modules with the Vision Transformer backbone network can improve the fine-grained visual classification accuracy. We employ commonly used fine-grained visual classification datasets CUB-200-2011, Stanford Cars, Stanford Dogs and NABirds to get advanced results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chai, Y., Lempitsky, V., Zisserman, A.: Symbiotic segmentation and part localization for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 321–328 (2013)

    Google Scholar 

  2. Choe, J., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2219–2228 (2019)

    Google Scholar 

  3. Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q., Salakhutdinov, R.: Transformer-XL: attentive language models beyond a fixed-length context. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 2978–2988 (2019). https://doi.org/10.18653/v1/P19-1285. https://aclanthology.org/P19-1285

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the conference, Association for Computational Linguistics. Meeting, pp. 4171–4186 (2019). https://doi.org/10.18653/v1/N19-1423. https://aclanthology.org/N19-1423

  5. DeVries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552 (2017)

  6. Ding, Y., Dong, S., Tong, Y., Ma, Z., Xiao, B., Ling, H.: Channel dropblock: an improved regularization method for fine-grained visual classification. arXiv preprint arXiv:2106.03432 (2021)

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)

    Google Scholar 

  8. Du, R., et al.: Fine-grained visual classification via progressive multi-granularity training of jigsaw patches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12365, pp. 153–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58565-5_10

    Chapter  Google Scholar 

  9. Fu, J., Zheng, H., Mei, T.: Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4438–4446 (2017)

    Google Scholar 

  10. Han, J., Yao, X., Cheng, G., Feng, X., Xu, D.: P-CNN: part-based convolutional neural networks for fine-grained visual categorization. IEEE Trans. Pattern Anal. Mach. Intell. 44(2), 579–590 (2022). https://doi.org/10.1109/TPAMI.2019.2933510

    Article  Google Scholar 

  11. He, J., et al.: TransFG: a transformer architecture for fine-grained recognition. arXiv preprint arXiv:2103.07976 (2021)

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018)

    Google Scholar 

  14. Hu, Y., et al.: Rams-trans: recurrent attention multi-scale transformer for fine-grained image recognition. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4239–4248 (2021)

    Google Scholar 

  15. Huang, S., Xu, Z., Tao, D., Zhang, Y.: Part-stacked CNN for fine-grained visual categorization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1173–1182 (2016)

    Google Scholar 

  16. Khosla, A., Jayadevaprakash, N., Yao, B., Li, F.F.: Novel dataset for fine-grained image categorization: Stanford dogs. In: Proceedings CVPR Workshop on Fine-Grained Visual Categorization (FGVC), vol. 2, no. 1 (2011)

    Google Scholar 

  17. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  18. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNN models for fine-grained visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1449–1457 (2015)

    Google Scholar 

  19. Liu, C., Xie, H., Zha, Z.J., Ma, L., Zhang, Y.: Filtration and distillation: enhancing region attention for fine-grained visual categorization. Proceed. AAAI Conf. Artif. Intell. 34(7), 11555–11562 (2020)

    Google Scholar 

  20. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  21. Liu, Z., Du, J., Wang, M., Ge, S.S.: ADCM: attention dropout convolutional module. Neurocomputing 394, 95–104 (2020)

    Article  Google Scholar 

  22. Luo, W., et al.: Cross-x learning for fine-grained visual categorization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8242–8251 (2019)

    Google Scholar 

  23. Park, J., Woo, S., Lee, J.Y., Kweon, I.S.: BAM: bottleneck attention module. British Machine Vision Conference, p. 147 (2018)

    Google Scholar 

  24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Tompson, J., Goroshin, R., Jain, A., LeCun, Y., Bregler, C.: Efficient object localization using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 648–656 (2015)

    Google Scholar 

  26. Tsai, Y.H.H., Bai, S., Liang, P.P., Kolter, J.Z., Morency, L.P., Salakhutdinov, R.: Multimodal transformer for unaligned multimodal language sequences. In: Proceedings of the conference, Association for Computational Linguistics. Meeting, p. 6558 (2019)

    Google Scholar 

  27. Van Horn, G., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 595–604 (2015). https://doi.org/10.1109/CVPR.2015.7298658

  28. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  29. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  30. Wang, J., Yu, X., Gao, Y.: Feature fusion vision transformer for fine-grained visual categorization. arXiv preprint arXiv:2107.02341 (2021)

  31. Wang, Q., Wu, B., Zhu, P., Li, P., Hu, Q.: ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  32. Wei, X.S., Xie, C.W., Wu, J., Shen, C.: Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recogn. 76, 704–714 (2018)

    Article  Google Scholar 

  33. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  34. Xiao, T., Xu, Y., Yang, K., Zhang, J., Peng, Y., Zhang, Z.: The application of two-level attention models in deep convolutional neural network for fine-grained image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 842–850 (2015)

    Google Scholar 

  35. Zhang, N., Donahue, J., Girshick, R., Darrell, T.: Part-based R-CNNs for fine-grained category detection. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_54

    Chapter  Google Scholar 

  36. Zhao, B., Wu, X., Feng, J., Peng, Q., Yan, S.: Diversified visual attention networks for fine-grained object classification. IEEE Trans. Multimedia 19(6), 1245–1256 (2017)

    Article  Google Scholar 

  37. Zheng, H., Fu, J., Tao, M., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: 2017 IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  38. Zhuang, P., Wang, Y., Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. Proceed. AAAI Conf. Artif. Intell. 34(07), 13130–13137 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is partly supported by national precision agriculture application project (construction number: JZNYYY001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lin, X., Yan, Q., Wu, C., Chen, Y. (2023). PEDTrans: A Fine-Grained Visual Classification Model for Self-attention Patch Enhancement and Dropout. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics