Skip to main content

Slice-Mask Based 3D Cardiac Shape Reconstruction from CT Volume

  • Conference paper
  • First Online:
Computer Vision – ACCV 2022 (ACCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13846))

Included in the following conference series:

  • 353 Accesses

Abstract

An accurate 3D ventricular model is essential for diagnosing and analyzing cardiovascular disease. It is challenging to obtain accurate patient-specific models on scarce data via widely accepted deep-learning methods. To fully use the characteristics of medical volume-based images, we present a slice-mask representation to better regress the parameters of the 3D model. A data synthesis strategy is proposed to alleviate the lack of training data by sampling in the constructed statistical shape model space and obtaining the corresponding slice-masks. We train the end-to-end structure by combining the segmentation and parametric regression modules. Furthermore, we establish a larger left ventricular CT dataset than before, which fills the gap in relevant data of the healthy population. Our method is evaluated on both synthetic data and real cardiac scans. Experiments demonstrate that our method can achieve advanced results in shape reconstruction and segmentation tasks. Code is publicly available at https://github.com/yuan-xiaohan/Slice-mask-based-3D-Cardiac-Shape-Reconstruction.

All the authors from Southeast University are affiliated with the Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Nanjing, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, J., Bhalodia, R., Elhabian, S.: Uncertain-DeepSSM: from images to probabilistic shape models. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Goksel, O., Rekik, I. (eds.) ShapeMI 2020. LNCS, vol. 12474, pp. 57–72. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61056-2_5

    Chapter  Google Scholar 

  2. Attar, R., et al.: 3D cardiac shape prediction with deep neural networks: simultaneous use of images and patient metadata. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 586–594. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_65

    Chapter  Google Scholar 

  3. Augustin, C.M., et al.: Anatomically accurate high resolution modeling of human whole heart electromechanics: a strongly scalable algebraic multigrid solver method for nonlinear deformation. J. Comput. Phys. 305, 622–646 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: DeepSSM: a deep learning framework for statistical shape modeling from raw images. In: Reuter, M., Wachinger, C., Lombaert, H., Paniagua, B., Lüthi, M., Egger, B. (eds.) ShapeMI 2018. LNCS, vol. 11167, pp. 244–257. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04747-4_23

    Chapter  Google Scholar 

  5. Boussaid, H., Rouet, L.: Shape feature loss for kidney segmentation in 3d ultrasound images. In: BMVC (2021)

    Google Scholar 

  6. Cai, J., Xia, Y., Yang, D., Xu, D., Yang, L., Roth, H.: End-to-End Adversarial Shape Learning for Abdomen Organ Deep Segmentation. In: Suk, H.-I., Liu, M., Yan, P., Lian, C. (eds.) MLMI 2019. LNCS, vol. 11861, pp. 124–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32692-0_15

    Chapter  Google Scholar 

  7. Duan, J., Bello, G., Schlemper, J., Bai, W., Dawes, T.J., Biffi, C., de Marvao, A., Doumoud, G., O’Regan, D.P., Rueckert, D.: Automatic 3d bi-ventricular segmentation of cardiac images by a shape-refined multi-task deep learning approach. IEEE Trans. Med. Imaging 38(9), 2151–2164 (2019)

    Article  Google Scholar 

  8. Ecabert, O., et al.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189–1201 (2008)

    Article  Google Scholar 

  9. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3d object reconstruction from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 605–613 (2017)

    Google Scholar 

  10. Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)

    Article  Google Scholar 

  11. Gu, Z., et al.: Ce-net: context encoder network for 2d medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)

    Article  Google Scholar 

  12. Habijan, M., Babin, D., Galić, I., Leventić, H., Romić, K., Velicki, L., Pižurica, A.: Overview of the whole heart and heart chamber segmentation methods. Cardiovasc. Eng. Technol. 11(6), 725–747 (2020)

    Article  Google Scholar 

  13. Hoogendoorn, C., et al.: A high-resolution atlas and statistical model of the human heart from multislice ct. IEEE Trans. Med. Imaging 32(1), 28–44 (2012)

    Article  Google Scholar 

  14. Karim, R., et al.: Algorithms for left atrial wall segmentation and thickness-evaluation on an open-source ct and mri image database. Med. Image Anal. 50, 36–53 (2018)

    Article  Google Scholar 

  15. Kong, F., Shadden, S.C.: Automating model generation for image-based cardiac flow simulation. J. Biomech. Eng. 142(11) (2020)

    Google Scholar 

  16. Kong, F., Shadden, S.C.: Whole heart mesh generation for image-based computational simulations by learning free-from deformations. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 550–559. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_53

    Chapter  Google Scholar 

  17. Kong, F., Wilson, N., Shadden, S.: A deep-learning approach for direct whole-heart mesh reconstruction. Med. Image Anal. 74, 102222 (2021)

    Article  Google Scholar 

  18. Lee, M.C.H., Petersen, K., Pawlowski, N., Glocker, B., Schaap, M.: Tetris: template transformer networks for image segmentation with shape priors. IEEE Trans. Med. Imaging 38(11), 2596–2606 (2019)

    Article  Google Scholar 

  19. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3d surface construction algorithm. ACM siggraph computer graphics 21(4), 163–169 (1987)

    Article  Google Scholar 

  20. Mandikal, P., Navaneet, K., Agarwal, M., Babu, R.V.: 3d-lmnet: Latent embedding matching for accurate and diverse 3d point cloud reconstruction from a single image. arXiv preprint arXiv:1807.07796 (2018)

  21. Medrano-Gracia, P., et al.: Large scale left ventricular shape atlas using automated model fitting to contours. In: Ourselin, S., Rueckert, D., Smith, N. (eds.) FIMH 2013. LNCS, vol. 7945, pp. 433–441. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38899-6_51

    Chapter  Google Scholar 

  22. Ordas, S., Oubel, E., Sebastian, R., Frangi, A.F.: Computational anatomy atlas of the heart. In: 2007 5th International Symposium on Image and Signal Processing and Analysis, pp. 338–342. IEEE (2007)

    Google Scholar 

  23. Organization, W.H.: The world health report 2002: reducing risks, promoting healthy life. World Health Organization (2002)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Sumner, R.W., Schmid, J., Pauly, M.: Embedded deformation for shape manipulation, pp. 80-es (2007)

    Google Scholar 

  26. Tilborghs, S., Dresselaers, T., Claus, P., Bogaert, J., Maes, F.: Shape constrained cnn for cardiac mr segmentation with simultaneous prediction of shape and pose parameters. arXiv preprint arXiv:2010.08952 (2020)

  27. Tóthová, K., Parisot, S., Lee, M., Puyol-Antón, E., King, A., Pollefeys, M., Konukoglu, E.: Probabilistic 3D surface reconstruction from sparse MRI information. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 813–823. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_79

    Chapter  Google Scholar 

  28. Wang, N., et al.: Pixel2mesh: 3d mesh model generation via image guided deformation. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3600–3613 (2020)

    Article  Google Scholar 

  29. Wang, Y., Zhong, Z., Hua, J.: Deeporgannet: on-the-fly reconstruction and visualization of 3d / 4d lung models from single-view projections by deep deformation network. IEEE Trans. Visual Comput. Graphics 26(1), 960–970 (2020). https://doi.org/10.1109/TVCG.2019.2934369

    Article  Google Scholar 

  30. Wickramasinghe, U., Remelli, E., Knott, G., Fua, P.: Voxel2Mesh: 3D mesh model generation from volumetric data. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_30

    Chapter  Google Scholar 

  31. Wolterink, J.M., et al.: An evaluation of automatic coronary artery calcium scoring methods with cardiac ct using the orcascore framework. Med. Phys. 43(5), 2361–2373 (2016)

    Article  Google Scholar 

  32. Ye, M., Huang, Q., Yang, D., Wu, P., Yi, J., Axel, L., Metaxas, D.: PC-U Net: learning to jointly reconstruct and segment the cardiac walls in 3D from CT Data. In: Puyol Anton, E., Pop, M., Sermesant, M., Campello, V., Lalande, A., Lekadir, K., Suinesiaputra, A., Camara, O., Young, A. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 117–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_12

    Chapter  Google Scholar 

  33. Zhou, X.-Y., Wang, Z.-Y., Li, P., Zheng, J.-Q., Yang, G.-Z.: One-stage shape instantiation from a single 2D image to 3D point cloud. In: Shen, D., Liu, T., Peters, T.M., Staib, L.H., Essert, C., Zhou, S., Yap, P.-T., Khan, A. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 30–38. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_4

    Chapter  Google Scholar 

  34. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  35. Zhuang, X., et al.: Evaluation of algorithms for multi-modality whole heart segmentation: an open-access grand challenge. Med. Image Anal. 58, 101537 (2019)

    Article  Google Scholar 

  36. Zotti, C., Luo, Z., Lalande, A., Jodoin, P.M.: Convolutional neural network with shape prior applied to cardiac mri segmentation. IEEE J. Biomed. Health Inform. 23(3), 1119–1128 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Jiangsu Province (No. BK20220127), the National Natural Science Foundation of China (No. 62076061), the “Young Elite Scientists Sponsorship Program by CAST” (No. YES20200025), and the “Zhishan Young Scholar” Program of Southeast University (No. 2242021R41083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangang Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5608 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yuan, X., Liu, C., Feng, F., Zhu, Y., Wang, Y. (2023). Slice-Mask Based 3D Cardiac Shape Reconstruction from CT Volume. In: Wang, L., Gall, J., Chin, TJ., Sato, I., Chellappa, R. (eds) Computer Vision – ACCV 2022. ACCV 2022. Lecture Notes in Computer Science, vol 13846. Springer, Cham. https://doi.org/10.1007/978-3-031-26351-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26351-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26350-7

  • Online ISBN: 978-3-031-26351-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics