Skip to main content

HarDNet-DFUS: Enhancing Backbone and Decoder of HarDNet-MSEG for Diabetic Foot Ulcer Image Segmentation

  • Conference paper
  • First Online:
Diabetic Foot Ulcers Grand Challenge (DFUC 2022)

Abstract

Diabetic foot ulcers are caused by neuropathic and vascular complications of diabetes mellitus. In order to provide a proper diagnosis and treatment, wound care professionals need to extract accurate morphological features from the foot wounds. Using computer-aided systems is a promising approach to extract related morphological features and segment the lesions. We propose a convolution neural network called HarDNet-DFUS by enhancing the backbone and replacing the decoder of HarDNet-MSEG, which was the state-of-the-art network for colonoscopy polyp segmentation in 2021. For the MICCAI 2022 Diabetic Foot Ulcer Segmentation Challenge (DFUC2022), we train HarDNet-DFUS using the DFUC2022 dataset and increase its robustness by means of five-fold cross validation and Test Time Augmentation. In the validation phase of DFUC2022, HarDNet-DFUS achieved 0.7063 mean Dice and was ranked third among all participants. In the final testing phase of DFUC2022, it achieved 0.7287 mean Dice and was the first place winner. The code is available on https://github.com/kytimmylai/DFUC2022.

T.-Y. Liao, C.-H. Yang, Y.-W. Lo and K.-Y. Lai—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cassidy, B., et al.: The DFUC 2020 dataset: analysis towards diabetic foot ulcer detection. touchREVIEWS in Endocrinol. 17, 5–11 (2021). https://doi.org/10.17925/EE.2021.17.1.5. https://www.touchendocrinology.com/diabetes/journal-articles/the-dfuc-2020-dataset-analysis-towards-diabetic-foot-ulcer-detection/1

  2. Chao, P., Kao, C.Y., Ruan, Y.S., Huang, C.H., Lin, Y.L.: HarDNet: a low memory traffic network. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 3552–3561 (2019). https://doi.org/10.1109/ICCV.2019.00365

  3. Cho, N., et al.: IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diab. Res. Clin. Pract. 138, 271–281 (2018). https://doi.org/10.1016/j.diabres.2018.02.023

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37, 1904–1916 (2015). https://doi.org/10.1109/TPAMI.2015.2389824

    Article  Google Scholar 

  5. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–7141 (2018). https://doi.org/10.1109/CVPR.2018.00745

  6. Huang, C.H., Wu, H.Y., Lin, Y.L.: HarDNet-MSEG: a simple encoder-decoder polyp segmentation neural network that achieves over 0.9 Mean Dice and 86 FPS. arXiv preprint arXiv:2101.07172 (2021)

  7. Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P., Johansen, H.: DoubleU-Net: a deep convolutional neural network for medical image segmentation. In: 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), pp. 558–564 (2020). https://doi.org/10.1109/CBMS49503.2020.00111

  8. Jha, D., Smedsrud, P.H., Riegler, M.A., et al.: ResUNet++: an advanced architecture for medical image segmentation. In: 2019 IEEE International Symposium on Multimedia (ISM), pp. 225–2255 (2019). https://doi.org/10.1109/ISM46123.2019.00049

  9. Kendrick, C., et al.: Translating clinical delineation of diabetic foot ulcers into machine interpretable segmentation (2022). https://doi.org/10.48550/ARXIV.2204.11618

  10. Ma, N., Zhang, X., Zheng, H.T., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. In: Advances in Neural Information Processing Systems, vol. 34, pp. 24261–24272 (2021). https://doi.org/10.48550/ARXIV.2105.01601

  13. Wang, C.Y., Mark Liao, H.Y., Wu, Y.H., Chen, P.Y., Hsieh, J.W., Yeh, I.H.: CSPNet: a new backbone that can enhance learning capability of CNN. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1571–1580 (2020). https://doi.org/10.1109/CVPRW50498.2020.00203

  14. Wei, J., Wang, S., Huang, Q.: F\(^3\)Net: fusion, feedback and focus for salient object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019). https://doi.org/10.48550/ARXIV.1911.11445

  15. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems, vol. 34, pp. 12077–12090 (2021). https://doi.org/10.48550/ARXIV.2105.15203

  16. Yan, H., Zhang, C., Wu, M.: Lawin transformer: improving semantic segmentation transformer with multi-scale representations via large window attention. arXiv preprint arXiv:2201.01615 (2022)

  17. Yap, M.H., Kendrick, C., Reeves, N.D., Goyal, M., Pappachan, J.M., Cassidy, B.: Development of diabetic foot ulcer datasets: an overview. Diab. Foot Ulcers Grand Challenge 1–18 (2021)

    Google Scholar 

  18. Yap, M.H., et al.: Diabetic foot ulcers grand challenge 2022 (2021). https://doi.org/10.5281/zenodo.6389665

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Ministry of Science and Technology (MOST) of Taiwan. We thank the National Center for High-performance Computing (NCHC) for computational and storage resources. We would also like to thank Professor Tzu-Chen Dorothy Yen and Professor Chang-Fu Kuo of Chang-Gang Memorial Hospital for their advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Yu Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liao, TY., Yang, CH., Lo, YW., Lai, KY., Shen, PH., Lin, YL. (2023). HarDNet-DFUS: Enhancing Backbone and Decoder of HarDNet-MSEG for Diabetic Foot Ulcer Image Segmentation. In: Yap, M.H., Kendrick, C., Cassidy, B. (eds) Diabetic Foot Ulcers Grand Challenge. DFUC 2022. Lecture Notes in Computer Science, vol 13797. Springer, Cham. https://doi.org/10.1007/978-3-031-26354-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26354-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26353-8

  • Online ISBN: 978-3-031-26354-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics