Abstract
In this work, we consider a zero-sum game between an adaptive defender and a potentially deceptive attacker who is able to vary their degree of rationality as a deceptive ruse. Under this setup, we provide a complete characterization of the deception space of the attacker and uncover optimal strategies for adaptive defender against a deceptive attacker. In addition, we consider the setup in which both the attacker and defender are allowed to evolve their strategies over time. In this setting, one of our main results is to demonstrate that allowing the attacker to vary their degree of rationality can significantly impact the game in favor of the attacker.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In other words, the value of \(\lambda ^{\ell }\) is unique.
- 2.
By arbitrary, we mean that \(\lambda ^{\ell }\) can be any real value.
- 3.
In other words, we consider the case where there may not exist a parameter \(\lambda '\) whereby we can write the observed distribution as \(\left( q_1', q_2', \ldots , q_T' \right) = \left( q_1(x,\lambda '), q_2(x,\lambda '), \ldots , q_T(x,\lambda ') \right) \) in the next section.
References
Abbasi, Y., et al.: Know your adversary: insights for a better adversarial behavioral model. In: CogSci (2016)
Alshamrani, A., et al.: A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities. IEEE Commun. Surv. Tutor. 21(2), 1851–1877 (2019)
Whaley, B.: Stratagem: Deception and Surprise in War. Center for International Studies, Massachusetts Institute of Technology, Cambridge (1969)
Bilinski, M., et al.: No time to lie: bounds on the learning rate of a defender for inferring attacker target preferences. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds.) GameSec 2021. LNCS, vol. 13061, pp. 138–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90370-1_8
Butler, A.R., Nguyen, T.H., Sinha, A.: Countering attacker data manipulation in security games. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds.) GameSec 2021. LNCS, vol. 13061, pp. 59–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90370-1_4
Cranford, E.A., et al.: Toward personalized deceptive signaling for cyber defense using cognitive models. Top. Cogn. Sci. 12(3), 992–1011 (2020)
Guo, Q., et al.: Comparing strategic secrecy and Stackelberg commitment in security games. In: 26th International Joint Conference on Artificial Intelligence (2017)
Haghtalab, N., et al.: Three strategies to success: learning adversary models in security games. In: International Joint Conference on Artificial Intelligence (IJCAI) (2016)
Mairh, A., et al.: Honeypot in network security: a survey. In: Proceedings of the 2011 International Conference on Communication, Computing and Security, pp. 600–605 (2011)
Nguyen, T.H., Wang, Y., Sinha, A., Wellman, M.P.: Deception in finitely repeated security games. In: AAAI (2019)
Pawlick, J., et al.: A game-theoretic taxonomy and survey of defensive deception for cybersecurity and privacy. ACM Comput. Surv. 52(4) (2019)
Rabinovich, Z., et al.: Information disclosure as a means to security. In: 14th International Conference on Autonomous Agents and Multi-agent Systems, pp. 645–653 (2015)
Rass, S., Zhu, Q.: GADAPT: a sequential game-theoretic framework for designing defense-in-depth strategies against advanced persistent threats. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 314–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47413-7_18
Shi, Z.R., et al.: Learning and planning in the feature deception problem. In: GameSec 2020. LNCS, vol. 12513, pp. 23–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_2
Sinha, A., Kar, D., Tambe, M.: Learning adversary behavior in security games: a PAC model perspective. In: AAMAS 2016 (2016)
Zhuang, J., Bier, V.M., Alagoz, O.: Modeling secrecy and deception in a multi-period attacker-defender signaling game. Eur. J. Oper. Res. 203(2), 409–418 (2010)
Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)
Thakoor, O., Jabbari, S., Aggarwal, P., Gonzalez, C., Tambe, M., Vayanos, P.: Exploiting bounded rationality in risk-based cyber camouflage games. In: Zhu, Q., Baras, J.S., Poovendran, R., Chen, J. (eds.) GameSec 2020. LNCS, vol. 12513, pp. 103–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_6
Zhang, J., Wang, Y., Zhuang, J.: Modeling multi-target defender-attacker games with quantal response attack strategies. 205, 107165 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
A Proof of Lemma 3
A Proof of Lemma 3
Analogous to the approach in Lemma 2, we note that \( \left( Tx - 1 \right) V \exp \left( \lambda (1-Tx)V \right) \leqslant \frac{1}{\lambda \exp (1)},\) which is achieved when \(x = \frac{1}{T} + \frac{1}{T \lambda V}\). Therefore, \( \sum _{i \in \{1,2,\ldots , T\}} q_i({\boldsymbol{x}}^{*}, \lambda ) U_i^{d}(x^{*}_i) \leqslant \frac{ (T-1) \frac{\exp (-1)}{\lambda } }{ \sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda V_j \left( 1-T x_j \right) \right) }.\) In order to maximize the previous expression, we seek to minimize the convex function \(\sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda V_j \left( 1-T x_j \right) \right) \). To this end, consider the Lagrangian
For \(i \in [T]\), \(\frac{ \partial \mathcal {L}(x_1,x_2, \ldots , x_T, \beta )}{\partial x_i} = 0\) implies that
Then, since \(\sum _{j \in \{1,2,\ldots ,T\}} x_j = 1\), either \(\sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log \frac{\beta }{T \lambda ^{\ell } V_j}}{T \lambda ^{\ell } V_j } = 0\) or \( \sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log \beta }{T \lambda ^{\ell } V_j } = \sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log T \lambda ^{\ell } V_j }{T \lambda ^{\ell } V_j }.\) This implies that \(\beta \geqslant T \lambda ^{\ell } V_{1}\) (recall \(V_{1} = \min _{j \in [T]} V_j\)). From (21), \( \sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda ^{\ell } V_j \left( 1-T x_j \right) \right) \geqslant \sum _{j \in \{1,2,\ldots , T\}} \frac{\beta }{T \lambda ^{\ell } V_j} \geqslant \sum _{j \in \{1,2,\ldots , T\}} \frac{V_{1}}{ V_j},\) which implies\( \sum _{i \in \{1,2,\ldots , T\}} q_i({\boldsymbol{x}}^{*}, \lambda ^{\ell }) U_i^{d}(x^{*}_i) \leqslant \frac{(T-1) \frac{\exp (-1)}{\lambda ^{\ell }}}{\sum _{j \in \{1,2,\ldots , T\}} \frac{V_{1}}{ V_j}},\) as desired.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gabrys, R., Bilinski, M., Mauger, J., Silva, D., Fugate, S. (2023). Casino Rationale: Countering Attacker Deception in Zero-Sum Stackelberg Security Games of Bounded Rationality. In: Fang, F., Xu, H., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2022. Lecture Notes in Computer Science, vol 13727. Springer, Cham. https://doi.org/10.1007/978-3-031-26369-9_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-26369-9_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26368-2
Online ISBN: 978-3-031-26369-9
eBook Packages: Computer ScienceComputer Science (R0)