Skip to main content

Casino Rationale: Countering Attacker Deception in Zero-Sum Stackelberg Security Games of Bounded Rationality

  • Conference paper
  • First Online:
Decision and Game Theory for Security (GameSec 2022)

Abstract

In this work, we consider a zero-sum game between an adaptive defender and a potentially deceptive attacker who is able to vary their degree of rationality as a deceptive ruse. Under this setup, we provide a complete characterization of the deception space of the attacker and uncover optimal strategies for adaptive defender against a deceptive attacker. In addition, we consider the setup in which both the attacker and defender are allowed to evolve their strategies over time. In this setting, one of our main results is to demonstrate that allowing the attacker to vary their degree of rationality can significantly impact the game in favor of the attacker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In other words, the value of \(\lambda ^{\ell }\) is unique.

  2. 2.

    By arbitrary, we mean that \(\lambda ^{\ell }\) can be any real value.

  3. 3.

    In other words, we consider the case where there may not exist a parameter \(\lambda '\) whereby we can write the observed distribution as \(\left( q_1', q_2', \ldots , q_T' \right) = \left( q_1(x,\lambda '), q_2(x,\lambda '), \ldots , q_T(x,\lambda ') \right) \) in the next section.

References

  1. Abbasi, Y., et al.: Know your adversary: insights for a better adversarial behavioral model. In: CogSci (2016)

    Google Scholar 

  2. Alshamrani, A., et al.: A survey on advanced persistent threats: techniques, solutions, challenges, and research opportunities. IEEE Commun. Surv. Tutor. 21(2), 1851–1877 (2019)

    Article  Google Scholar 

  3. Whaley, B.: Stratagem: Deception and Surprise in War. Center for International Studies, Massachusetts Institute of Technology, Cambridge (1969)

    Google Scholar 

  4. Bilinski, M., et al.: No time to lie: bounds on the learning rate of a defender for inferring attacker target preferences. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds.) GameSec 2021. LNCS, vol. 13061, pp. 138–157. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90370-1_8

    Chapter  Google Scholar 

  5. Butler, A.R., Nguyen, T.H., Sinha, A.: Countering attacker data manipulation in security games. In: Bošanský, B., Gonzalez, C., Rass, S., Sinha, A. (eds.) GameSec 2021. LNCS, vol. 13061, pp. 59–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90370-1_4

    Chapter  Google Scholar 

  6. Cranford, E.A., et al.: Toward personalized deceptive signaling for cyber defense using cognitive models. Top. Cogn. Sci. 12(3), 992–1011 (2020)

    Article  Google Scholar 

  7. Guo, Q., et al.: Comparing strategic secrecy and Stackelberg commitment in security games. In: 26th International Joint Conference on Artificial Intelligence (2017)

    Google Scholar 

  8. Haghtalab, N., et al.: Three strategies to success: learning adversary models in security games. In: International Joint Conference on Artificial Intelligence (IJCAI) (2016)

    Google Scholar 

  9. Mairh, A., et al.: Honeypot in network security: a survey. In: Proceedings of the 2011 International Conference on Communication, Computing and Security, pp. 600–605 (2011)

    Google Scholar 

  10. Nguyen, T.H., Wang, Y., Sinha, A., Wellman, M.P.: Deception in finitely repeated security games. In: AAAI (2019)

    Google Scholar 

  11. Pawlick, J., et al.: A game-theoretic taxonomy and survey of defensive deception for cybersecurity and privacy. ACM Comput. Surv. 52(4) (2019)

    Google Scholar 

  12. Rabinovich, Z., et al.: Information disclosure as a means to security. In: 14th International Conference on Autonomous Agents and Multi-agent Systems, pp. 645–653 (2015)

    Google Scholar 

  13. Rass, S., Zhu, Q.: GADAPT: a sequential game-theoretic framework for designing defense-in-depth strategies against advanced persistent threats. In: Zhu, Q., Alpcan, T., Panaousis, E., Tambe, M., Casey, W. (eds.) GameSec 2016. LNCS, vol. 9996, pp. 314–326. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47413-7_18

    Chapter  Google Scholar 

  14. Shi, Z.R., et al.: Learning and planning in the feature deception problem. In: GameSec 2020. LNCS, vol. 12513, pp. 23–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_2

    Chapter  Google Scholar 

  15. Sinha, A., Kar, D., Tambe, M.: Learning adversary behavior in security games: a PAC model perspective. In: AAMAS 2016 (2016)

    Google Scholar 

  16. Zhuang, J., Bier, V.M., Alagoz, O.: Modeling secrecy and deception in a multi-period attacker-defender signaling game. Eur. J. Oper. Res. 203(2), 409–418 (2010)

    Article  MATH  Google Scholar 

  17. Tambe, M.: Security and Game Theory: Algorithms, Deployed Systems, Lessons Learned. Cambridge University Press, Cambridge (2011)

    Book  MATH  Google Scholar 

  18. Thakoor, O., Jabbari, S., Aggarwal, P., Gonzalez, C., Tambe, M., Vayanos, P.: Exploiting bounded rationality in risk-based cyber camouflage games. In: Zhu, Q., Baras, J.S., Poovendran, R., Chen, J. (eds.) GameSec 2020. LNCS, vol. 12513, pp. 103–124. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64793-3_6

    Chapter  Google Scholar 

  19. Zhang, J., Wang, Y., Zhuang, J.: Modeling multi-target defender-attacker games with quantal response attack strategies. 205, 107165 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Gabrys .

Editor information

Editors and Affiliations

A Proof of Lemma 3

A Proof of Lemma 3

Analogous to the approach in Lemma 2, we note that \( \left( Tx - 1 \right) V \exp \left( \lambda (1-Tx)V \right) \leqslant \frac{1}{\lambda \exp (1)},\) which is achieved when \(x = \frac{1}{T} + \frac{1}{T \lambda V}\). Therefore, \( \sum _{i \in \{1,2,\ldots , T\}} q_i({\boldsymbol{x}}^{*}, \lambda ) U_i^{d}(x^{*}_i) \leqslant \frac{ (T-1) \frac{\exp (-1)}{\lambda } }{ \sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda V_j \left( 1-T x_j \right) \right) }.\) In order to maximize the previous expression, we seek to minimize the convex function \(\sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda V_j \left( 1-T x_j \right) \right) \). To this end, consider the Lagrangian

$$\begin{aligned} \mathcal {L}(x_1,x_2, \ldots , x_T, \beta ) = \sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda V_j \left( 1-T x_j \right) \right) + \beta \left( \sum _{j \in \{1,2,\ldots ,T\}} x_j - 1 \right) . \end{aligned}$$

For \(i \in [T]\), \(\frac{ \partial \mathcal {L}(x_1,x_2, \ldots , x_T, \beta )}{\partial x_i} = 0\) implies that

$$\begin{aligned} x_i = \frac{1}{T} - \frac{ \log \frac{\beta }{T \lambda V_i}}{T \lambda ^{\ell } V_i }. \end{aligned}$$
(21)

Then, since \(\sum _{j \in \{1,2,\ldots ,T\}} x_j = 1\), either \(\sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log \frac{\beta }{T \lambda ^{\ell } V_j}}{T \lambda ^{\ell } V_j } = 0\) or \( \sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log \beta }{T \lambda ^{\ell } V_j } = \sum _{j \in \{1,2,\ldots ,T\}} \frac{ \log T \lambda ^{\ell } V_j }{T \lambda ^{\ell } V_j }.\) This implies that \(\beta \geqslant T \lambda ^{\ell } V_{1}\) (recall \(V_{1} = \min _{j \in [T]} V_j\)). From (21), \( \sum _{j \in \{1,2,\ldots , T\}} \exp \left( \lambda ^{\ell } V_j \left( 1-T x_j \right) \right) \geqslant \sum _{j \in \{1,2,\ldots , T\}} \frac{\beta }{T \lambda ^{\ell } V_j} \geqslant \sum _{j \in \{1,2,\ldots , T\}} \frac{V_{1}}{ V_j},\) which implies\( \sum _{i \in \{1,2,\ldots , T\}} q_i({\boldsymbol{x}}^{*}, \lambda ^{\ell }) U_i^{d}(x^{*}_i) \leqslant \frac{(T-1) \frac{\exp (-1)}{\lambda ^{\ell }}}{\sum _{j \in \{1,2,\ldots , T\}} \frac{V_{1}}{ V_j}},\) as desired.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gabrys, R., Bilinski, M., Mauger, J., Silva, D., Fugate, S. (2023). Casino Rationale: Countering Attacker Deception in Zero-Sum Stackelberg Security Games of Bounded Rationality. In: Fang, F., Xu, H., Hayel, Y. (eds) Decision and Game Theory for Security. GameSec 2022. Lecture Notes in Computer Science, vol 13727. Springer, Cham. https://doi.org/10.1007/978-3-031-26369-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26369-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26368-2

  • Online ISBN: 978-3-031-26369-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics