Skip to main content

Deep Learning Based Urban Anomaly Prediction from Spatiotemporal Data

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Urban anomalies are unusual occurrences like congestion, crowd gathering, road accidents, natural disasters, crime, etc., that cause disturbance in society and, in worst cases, may cause loss to property or life. Prediction of these anomalies at the early stages may prevent significant loss and help the government to maintain urban sustainability. However, predicting different kinds of urban anomaly is difficult because of its dynamic nature (e.g., holiday versus weekday, office versus shopping mall) and presence in various forms (e.g., road congestion may be caused by blocked driveway or accident). This work proposes a novel integrated framework UrbanAnom that utilizes a data fusion approach to predict urban anomaly data using gated graph convolution and recurrent unit. To evaluate our urban anomaly prediction framework, we utilize multi-stream datasets of New York City’s urban anomalies, points of interest (POI), roads, calendar, and weather that were collected via smart devices in the city. The extensive experiments show that our proposed framework outperforms baseline and state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://opendata.cityofnewyork.us/.

  2. 2.

    https://portal.311.nyc.gov/.

  3. 3.

    https://www.openstreetmap.org/.

  4. 4.

    https://figshare.com/articles/dataset/Urban_Road_Network_Data/2061897.

  5. 5.

    https://www.wunderground.com/.

  6. 6.

    https://pypi.org/project/holidays/.

References

  1. Bresson, X., Laurent, T.: Residual gated graph convnets. arXiv preprint arXiv:1711.07553 (2017)

  2. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  3. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  4. Dash, D.K.: Traffic congestion costs four major Indian cities rs. 1.5 lakh crore a year. https://timesofindia.indiatimes.com/india/traffic-congestion-costs-four-major-indian-cities-rs-1-5-lakh-crore-a-year/articleshow/63918040.cms (2018)

  5. Dwivedi, V.P., Joshi, C.K., Laurent, T., Bengio, Y., Bresson, X.: Benchmarking graph neural networks. arXiv preprint arXiv:2003.00982 (2020)

  6. Feng, J., et al.: Deepmove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)

    Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  8. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  9. Huang, C., Wu, X., Wang, D.: Crowdsourcing-based urban anomaly prediction system for smart cities. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pp. 1969–1972 (2016)

    Google Scholar 

  10. Huang, C., Zhang, C., Dai, P., Bo, L.: Cross-interaction hierarchical attention networks for urban anomaly prediction. In: IJCAI (2020)

    Google Scholar 

  11. Huang, C., Zhang, C., Zhao, J., Wu, X., Yin, D., Chawla, N.: Mist: a multiview and multimodal spatial-temporal learning framework for citywide abnormal event forecasting. In: The World Wide Web Conference, pp. 717–728 (2019)

    Google Scholar 

  12. Jiang, R., et al.: Deepurbanevent: a system for predicting citywide crowd dynamics at big events. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2114–2122 (2019)

    Google Scholar 

  13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  14. Liu, Q., Wu, S., Wang, L., Tan, T.: Predicting the next location: A recurrent model with spatial and temporal contexts. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  15. Liu, R., Zhao, S., Cheng, B., Yang, H., Tang, H., Li, T.: Deep spatio-temporal multiple domain fusion network for urban anomalies detection. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 905–914 (2020)

    Google Scholar 

  16. Liu, R., Zhao, S., Cheng, B., Yang, H., Tang, H., Yang, F.: St-MFM: a spatiotemporal multi-modal fusion model for urban anomalies prediction. In: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (2020)

    Google Scholar 

  17. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.: A dual-stage attention-based recurrent neural network for time series prediction. arXiv preprint arXiv:1704.02971 (2017)

  18. Shimosaka, M., Tsubouchi, K., Chen, Y., Ishihara, Y., Sato, J.: Moire: mixed-order poisson regression towards fine-grained urban anomaly detection at nationwide scale. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 963–970. IEEE (2020)

    Google Scholar 

  19. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  20. Wang, Y., Xu, J., Xu, M., Zheng, N., Jiang, J., Kong, K.: A feature-based method for traffic anomaly detection. In: Proceedings of the 2Nd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics, pp. 1–8 (2016)

    Google Scholar 

  21. Wu, X., Dong, Y., Huang, C., Xu, J., Wang, D., Chawla, N.V.: UAPD: predicting urban anomalies from spatial-temporal data. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 622–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_38

    Chapter  Google Scholar 

  22. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)

  23. Yuan, J., Zheng, Y., Xie, X.: Discovering regions of different functions in a city using human mobility and pois. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 186–194 (2012)

    Google Scholar 

  24. Yuan, N.J., Zheng, Y., Xie, X.: Segmentation of urban areas using road networks. Microsoft Corp., Redmond, WA, USA, Technical reports MSR-TR-2012-65 (2012)

    Google Scholar 

  25. Zhang, H., Zheng, Y., Yu, Y.: Detecting urban anomalies using multiple spatio-temporal data sources. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 2, no. 1, pp. 1–18 (2018)

    Google Scholar 

  26. Zhang, M., Li, T., Shi, H., Li, Y., Hui, P.: A decomposition approach for urban anomaly detection across spatiotemporal data. In: IJCAI, pp. 6043–6049 (2019)

    Google Scholar 

  27. Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. (2019)

    Google Scholar 

  28. Zheng, Y., Zhang, H., Yu, Y.: Detecting collective anomalies from multiple spatio-temporal datasets across different domains. In: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 1–10 (2015)

    Google Scholar 

  29. Zhou, B., et al.: Escort: fine-grained urban crime risk inference leveraging heterogeneous open data. IEEE Syst. J. 15, 4656–4667 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhumika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhumika, Das, D. (2023). Deep Learning Based Urban Anomaly Prediction from Spatiotemporal Data. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics