Skip to main content

Knowledge-Driven Interpretation of Convolutional Neural Networks

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Since the widespread adoption of deep learning solutions in critical environments, the interpretation of artificial neural networks has become a significant issue. To this end, numerous approaches currently try to align human-level concepts with the activation patterns of artificial neurons. Nonetheless, they often understate two related aspects: the distributed nature of neural representations and the semantic relations between concepts. We explicitly tackled this interrelatedness by defining a novel semantic alignment framework to align distributed activation patterns and structured knowledge. In particular, we detailed a solution to assign to both neurons and their linear combinations one or more concepts from the WordNet semantic network. Acknowledging semantic links also enabled the clustering of neurons into semantically rich and meaningful neural circuits. Our empirical analysis of popular convolutional networks for image classification found evidence of the emergence of such neural circuits. Finally, we discovered neurons in neural circuits to be pivotal for the network to perform effectively on semantically related tasks. We also contribute by releasing the code that implements our alignment framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/rmassidda/bisturi.

  2. 2.

    https://github.com/CSAILVision/places365.

References

  1. Araujo, A., Norris, W., Sim, J.: Computing receptive fields of convolutional neural networks. Distill (2019). https://doi.org/10.23915/distill.00021, https://distill.pub/2019/computing-receptive-fields

  2. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  3. Deng, J., Dong, W., Socher, R., Li, L., Kai Li, Li Fei-Fei: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009). https://doi.org/10.1109/CVPR.2009.5206848

  4. Euzenat, J., Shvaiko, P.: Classifications of Ontology Matching Techniques. In: In: Ontology Matching, pp. 73–84. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0_4

    Chapter  MATH  Google Scholar 

  5. Euzenat, J., Shvaiko, P.: The Matching Problem. In: In: Ontology Matching, pp. 25–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38721-0_2

    Chapter  MATH  Google Scholar 

  6. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3449–3457, October 2017. https://doi.org/10.1109/ICCV.2017.371, iSSN: 2380-7504

  7. Frege, G.: Function und Begriff. Hermann Pohle, Jena (1891)

    MATH  Google Scholar 

  8. Goh, G., et al.: Multimodal neurons in artificial neural networks. Distill (2021). https://doi.org/10.23915/distill.00030. https://distill.pub/2021/multimodal-neurons

  9. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  10. Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., Pedreschi, D.: A survey of methods for explaining black box models. ACM Comput. Surv. (CSUR) 51(5), 1–42 (2018)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  12. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  13. Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of the 10th Research on Computational Linguistics International Conference, pp. 19–33. The Association for Computational Linguistics and Chinese Language Processing (ACLCLP), Taipei, Taiwan, August 1997. https://aclanthology.org/O97-1002

  14. Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., Sayres, R.: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV). arXiv:1711.11279 [stat], June 2018. http://arxiv.org/abs/1711.11279,arXiv: 1711.11279

  15. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. CoRR abs/1404.5997 (2014). http://arxiv.org/abs/1404.5997

  16. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  17. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  18. Miller, G.A., Hristea, F.: Wordnet nouns: classes and instances. Comput. Linguist. 32(1), 1–3 (2006). https://doi.org/10.1162/coli.2006.32.1.1

  19. Mu, J., Andreas, J.: Compositional explanations of neurons. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 17153–17163. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/c74956ffb38ba48ed6ce977af6727275-Paper.pdf

  20. Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M., Carter, S.: Zoom. In: An introduction to circuits. Distill (2020). https://doi.org/10.23915/distill.00024.001. https://distill.pub/2020/circuits/zoom-in

  21. Olah, C., Mordvintsev, A., Schubert, L.: Feature visualization. Distill (2017). https://doi.org/10.23915/distill.00007. https://distill.pub/2017/feature-visualization

  22. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42(2), 949–971 (2015)

    Article  Google Scholar 

  23. Page, M.: Connectionist modelling in psychology: a localist manifesto. Behavioral Brain Sci. 23(4), 443–467 (2000). https://doi.org/10.1017/S0140525X00003356

    Article  Google Scholar 

  24. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  25. Zhou, B., Khosla, A., Lapedriza, À., Oliva, A., Torralba, A.: Object detectors emerge in deep scene cnns. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9, May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1412.6856

  26. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  27. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf

  28. Zhou, B., Sun, Y., Bau, D., Torralba, A.: Interpretable basis decomposition for visual explanation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_8

    Chapter  Google Scholar 

  29. Zhou, B., Sun, Y., Bau, D., Torralba, A.: Revisiting the importance of individual units in cnns via ablation. CoRR abs/1806.02891 (2018). http://arxiv.org/abs/1806.02891

Download references

Acknowledgments

This research was partially supported by TAILOR, a project funded by EU Horizon 2020 research and innovation programme under GA No 952215.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Massidda .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 5065 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Massidda, R., Bacciu, D. (2023). Knowledge-Driven Interpretation of Convolutional Neural Networks. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics