Skip to main content

Mitigating Confounding Bias for Recommendation via Counterfactual Inference

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13713))

Abstract

Recommender systems usually face the bias problem, which creates a gap between recommendation results and the actual user preference. Existing works track this problem by assuming a specific bias and then develop a method to mitigate it, which lack universality. In this paper, we attribute the root reason of the bias problem to a causality concept: confounders, which are the variables that influence both which items the user will interact with and how they rate them. Meanwhile, the theory around causality says that some confounders may remain unobserved and are hard to calculate. Accordingly, we propose a novel Counterfactual Inference for Deconfounded Recommendation (CIDR) framework that enables the analysis of causes of biases from a causal perspective. We firstly analyze the causal-effect of confounders, and then utilize the biased observational data to capture a substitute of confounders on both user side and item side. Finally, we boost counterfactual inference to eliminate the causal-effect of such confounders in order to achieve a satisfactory recommendation with the help of user and item side information (e.g., user post-click feedback data, item multi-model data). For evaluation, we compare our method with several state-of-the-art debias methods on three real-world datasets, in addition to new causal-based approaches. Extensive experiments demonstrate the effectiveness of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work, we follow [28] and [17] to define the causal effect on individual rather than a population.

References

  1. Ai, Q., Bi, K., Luo, C., Guo, J., Croft, W.B.: Unbiased learning to rank with unbiased propensity estimation. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, pp. 385–394 (2018)

    Google Scholar 

  2. Bonner, S., Vasile, F.: Causal embeddings for recommendation. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 104–112 (2018)

    Google Scholar 

  3. Chaney, A.J., Stewart, B.M., Engelhardt, B.E.: How algorithmic confounding in recommendation systems increases homogeneity and decreases utility. In: Proceedings of the 12th ACM Conference on Recommender Systems, pp. 224–232 (2018)

    Google Scholar 

  4. Chen, J., et al.: AutoDebias: learning to debias for recommendation. arXiv preprint arXiv:2105.04170 (2021)

  5. Chen, J., Dong, H., Wang, X., Feng, F., Wang, M., He, X.: Bias and debias in recommender system: a survey and future directions. arXiv preprint arXiv:2010.03240 (2020)

  6. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  7. Ding, S., Feng, F., He, X., Liao, Y., Shi, J., Zhang, Y.: Causal incremental graph convolution for recommender system retraining. arXiv preprint arXiv:2108.06889 (2021)

  8. Dong, Z., et al.: Counterfactual learning for recommender system. In: Fourteenth ACM Conference on Recommender Systems, pp. 568–569 (2020)

    Google Scholar 

  9. Greenland, S., Pearl, J., Robins, J.M.: Confounding and collapsibility in causal inference. Stat. Sci. 14(1), 29–46 (1999)

    Article  MATH  Google Scholar 

  10. Gulla, J.A., Zhang, L., Liu, P., Özgöbek, Ö., Su, X.: The adressa dataset for news recommendation. In: Proceedings of the International Conference on Web Intelligence, pp. 1042–1048 (2017)

    Google Scholar 

  11. Guo, H., Yu, J., Liu, Q., Tang, R., Zhang, Y.: Pal: a position-bias aware learning framework for CTR prediction in live recommender systems. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 452–456 (2019)

    Google Scholar 

  12. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the 26th International Conference on World Wide Web, pp. 173–182 (2017)

    Google Scholar 

  13. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  14. Li, Q., Wang, X., Xu, G.: Be causal: de-biasing social network confounding in recommendation. arXiv preprint arXiv:2105.07775 (2021)

  15. Liu, D., Cheng, P., Dong, Z., He, X., Pan, W., Ming, Z.: A general knowledge distillation framework for counterfactual recommendation via uniform data (2020)

    Google Scholar 

  16. Liu, W., Guo, J., Sonboli, N., Burke, R., Zhang, S.: Personalized fairness-aware re-ranking for microlending. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 467–471 (2019)

    Google Scholar 

  17. Niu, Y., Tang, K., Zhang, H., Lu, Z., Hua, X.S., Wen, J.R.: Counterfactual VGA: a cause-effect look at language bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12700–12710 (2021)

    Google Scholar 

  18. Pearl, J.: Causality. Cambridge University Press (2009)

    Google Scholar 

  19. Pearl, J., Glymour, M., Jewell, N.P.: Causal inference in statistics: a primer. John Wiley & Sons (2016)

    Google Scholar 

  20. Pearl, J., Mackenzie, D.: The book of why: the new science of cause and effect. Basic books (2018)

    Google Scholar 

  21. Rosenbaum, P.R., Rubin, D.B.: The central role of the propensity score in observational studies for causal effects. Biometrika 70(1), 41–55 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Saito, Y., Yaginuma, S., Nishino, Y., Sakata, H., Nakata, K.: Unbiased recommender learning from missing-not-at-random implicit feedback. In: Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 501–509 (2020)

    Google Scholar 

  23. Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., Zhang, Y.: Counterfactual explainable recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1784–1793 (2021)

    Google Scholar 

  24. Wang, W., Feng, F., He, X., Zhang, H., Chua, T.S.: Clicks can be cheating: counterfactual recommendation for mitigating clickbait issue. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1288–1297 (2021)

    Google Scholar 

  25. Wang, X., Zhang, R., Sun, Y., Qi, J.: Doubly robust joint learning for recommendation on data missing not at random. In: International Conference on Machine Learning, pp. 6638–6647. PMLR (2019)

    Google Scholar 

  26. Wang, Y., Blei, D.M.: The blessings of multiple causes. J. Am. Stat. Assoc. 114(528), 1574–1596 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, Y., Liang, D., Charlin, L., Blei, D.M.: Causal inference for recommender systems. In: Fourteenth ACM Conference on Recommender Systems, pp. 426–431 (2020)

    Google Scholar 

  28. Wei, T., Feng, F., Chen, J., Wu, Z., Yi, J., He, X.: Model-agnostic counterfactual reasoning for eliminating popularity bias in recommender system. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1791–1800 (2021)

    Google Scholar 

  29. Wei, Y., Wang, X., Nie, L., He, X., Hong, R., Chua, T.S.: MMGCN: multi-modal graph convolution network for personalized recommendation of micro-video. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1437–1445 (2019)

    Google Scholar 

  30. Wen, H., Yang, L., Estrin, D.: Leveraging post-click feedback for content recommendations. In: Proceedings of the 13th ACM Conference on Recommender Systems, pp. 278–286 (2019)

    Google Scholar 

  31. Xu, S., Ge, Y., Li, Y., Fu, Z., Chen, X., Zhang, Y.: Causal collaborative filtering. arXiv preprint arXiv:2102.01868 (2021)

  32. Xu, S., Tan, J., Heinecke, S., Li, J., Zhang, Y.: Deconfounded causal collaborative filtering, pp. 40–43 (2021). http://arxiv.org/abs/2110.07122

  33. Yi, X., Hong, L., Zhong, E., Liu, N.N., Rajan, S.: Beyond clicks: dwell time for personalization. In: Proceedings of the 8th ACM Conference on Recommender systems, pp. 113–120 (2014)

    Google Scholar 

  34. Zhang, Y., et al.: Causal intervention for leveraging popularity bias in recommendation. arXiv preprint arXiv:2105.06067 (2021)

  35. Zheng, Y., Gao, C., Li, X., He, X., Li, Y., Jin, D.: Disentangling user interest and conformity for recommendation with causal embedding. In: Proceedings of the Web Conference 2021, pp. 2980–2991 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, M., Hu, X., Li, C., Chen, X., Wang, J. (2023). Mitigating Confounding Bias for Recommendation via Counterfactual Inference. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13713. Springer, Cham. https://doi.org/10.1007/978-3-031-26387-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26387-3_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26386-6

  • Online ISBN: 978-3-031-26387-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics