Skip to main content

SkipCas: Information Diffusion Prediction Model Based on Skip-Gram

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13714))

  • 702 Accesses

Abstract

The development of social network platforms such as Twitter and Weibo has accelerated the generation and transmission of information. Predicting the growth size of the information cascade is widely used in the fields of preventing rumor spread, viral marketing, recommendation system and so on. However, most of the existing methods either cannot fully capture the structural representation of the cascade graph, or cannot effectively utilize the dynamic changes of information diffusion, which often leads to poor prediction results. Therefore, in this paper, we propose a novel deep learning model called SkipCas to predict the growth size of the information cascade. First, we use the diffusion path and time effect at each diffusion time in the cascade graph to obtain the dynamic process of the information diffusion. Second, we put the sequence of biased random walk sampling into the skip-gram model to obtain the structural representation of the cascade graph. Finally, we combine the dynamic diffusion process and the structural representation to predict the growth size of the information cascade. Extensive experiments on two real datasets show that our model SkipCas significantly improves the prediction accuracy compared with the state-of-the-art models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gao, X., Cao, Z., Li, S., Yao, B., Chen, G., Tang, S.: Taxonomy and evaluation for microblog popularity prediction. In: TKDD, pp. 1–40 (2019)

    Google Scholar 

  2. Zhou, F., Xu, X., Trajcevski, G., Zhang, K.: A Survey of information cascade analysis: models, predictions, and recent advances. ACM Comput Surv. 54(2), 1–36 (2021)

    Article  Google Scholar 

  3. Szabo, G., Huberman, B.A.: Predicting the popularity of online content. Commun. ACM 53(8), 80–88 (2010)

    Article  Google Scholar 

  4. Pinto, H., Almeida, J.M., Gonçalves, M.A.: Using early view patterns to predict the popularity of youtube videos. In: WSDM, pp. 365–374 (2013)

    Google Scholar 

  5. Bao, P., Shen, H., Huang, J., Cheng, X.: Popularity prediction in microblogging network: a case study on sina weibo. In: WWW, pp. 177–178 (2013)

    Google Scholar 

  6. Weng, L., Menczer, F., Ahn, Y.: Predicting successful memes using network and community structure. In: ICWSM (2014)

    Google Scholar 

  7. Tsur, O., Rappoport, A.: What’s in a hashtag? Content based prediction of the spread of Ideas in microblogging communities. In: WSDM,, pp. 643–652 (2012)

    Google Scholar 

  8. Ma, Z., Sun, A., Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter. Assoc. Inf. Sci. Technol. 64(7), 1399–1410 (2013)

    Article  Google Scholar 

  9. Bao, Z., Liu, Y., Zhang, Z., Liu, H., Cheng, J.: Predicting popularity via a generative model with adaptive peeking window. Phys. A 522, 54–68 (2019)

    Article  Google Scholar 

  10. Zhao, Q., Erdogdu, M.A., He, H.Y., Rajaraman, A., Leskovec, J.: SEISMIC: a self-Exciting point process model for predicting tweet popularity. In: SIGKDD, pp. 1513–1522 (2015)

    Google Scholar 

  11. Rizoiu, M., Xie, L., Sanner, S., Cebrian, M., Yu, H., Hentenryck, P.V.: Expecting to be HIP: Hawkes intensity processes for social media popularity. In: WWW, pp. 735–744 (2017)

    Google Scholar 

  12. Li, C., Ma, J., Guo, X., Mei, Q.: DeepCas: an end-to-end predictor of information cascades. In: WWW, pp. 577–586 (2017)

    Google Scholar 

  13. Wang, J., Zheng, V.W., Liu, Z., Chang, K.C.: Topological recurrent neural network for diffusion prediction. In: ICDM, pp. 475–484 (2017)

    Google Scholar 

  14. Feng, X., Zhao, Q., Liu, Z.: Prediction of information cascades via content and structure proximity preserved graph level embedding. Inf. Sci. 560, 424–440 (2021)

    Article  MathSciNet  Google Scholar 

  15. Cao, Q., Shen, H., Cen, K., Ouyang, W.R., Cheng, X.: DeepHawkes: bridging the gap between prediction and understanding of information cascades. In: CIKM, pp. 1149–158 (2017)

    Google Scholar 

  16. Saha, A., Samanta, B., Ganguly, N., De, A.: CRPP: competing recurrent point process for modeling visibility dynamics in information diffusion. In: CIKM, pp. 537–546 (2018)

    Google Scholar 

  17. Cui, P., Jin, S., Yu, L., Wang, F., Zhu, W., Yang, S.: Cascading outbreak prediction in networks: a data-driven approach. In: SIGKDD, pp. 901–909 (2013)

    Google Scholar 

  18. Yu, L., Cui, P., Wang, F., Song, C., Yang, S.: From micro to macro: uncovering and predicting information cascading process with behavioral dynamics. In: ICDM, pp. 559–568 (2015)

    Google Scholar 

  19. Pinto, H., Almeida, J.M., Gonçalves, M.A.: Using early view patterns to predict the popularity of youtube videos. In: WSDM, pp. 365–374 (2013)

    Google Scholar 

  20. Shen, H., Wang, D., Song, C., Barabasi, A.L.: Modeling and predicting popularity dynamics via reinforced poisson processes. In: AAAI, pp. 291–297 (2014)

    Google Scholar 

  21. Iwata, T., Shah, A., Ghahramani, Z.: Discovering latent influence in online social activities via shared cascade poisson processes. In: SIGKDD, pp. 266–274 (2013)

    Google Scholar 

  22. Zaman, T., Fox, E.B., Bradlow, E.T.: A Bayesian approach for predicting the popularity of tweets. Ann. Appl. Stat. 8(3), 1583–1611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, X., Zhou, F., Zhang, K., Trajcevski, G., Zhong, T.: Information diffusion prediction via recurrent cascades convolution. In: ICDE, pp. 770–781 (2019)

    Google Scholar 

  24. Zhou, F., Xu, X., Zhang, K., Trajcevski, G., Zhong, T.: Variational information diffusion for probabilistic cascades prediction. In: INFOCOM, pp. 1618–1627, (2020)

    Google Scholar 

  25. Wang, Y., Shen, H., Liu, S., Gao, J., Cheng, X.: Cascade dynamics modeling with attention-based recurrent neural network. In: IJCAI, pp. 2985–2991 (2017)

    Google Scholar 

  26. Wang, Z., Chen, C., Li, W.: A sequential neural information diffusion model with structure attention. In: CIKM, pp. 1795–1798 (2018)

    Google Scholar 

  27. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S.: Distributed representations of words and phrases and their compositionality. In: NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  28. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: SIGKDD, pp. 701–710 (2014)

    Google Scholar 

  29. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: SIGKDD, pp. 855–864 (2016)

    Google Scholar 

  30. Kipf, T., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR, (2017)

    Google Scholar 

  31. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS, pp. 1025–1035 (2017)

    Google Scholar 

  32. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchical graph representation learning with differentiable pooling. In: NeurIPS, pp. 4800–4810 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61972135), the Natural Science Foundation of Heilongjiang Province in China (No. LH2020F043), and the Foundation of Graduate Innovative Research of Heilongjiang University in China (No. YJSCX2022-236HLJU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, D., Liu, Y. (2023). SkipCas: Information Diffusion Prediction Model Based on Skip-Gram. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13714. Springer, Cham. https://doi.org/10.1007/978-3-031-26390-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26390-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26389-7

  • Online ISBN: 978-3-031-26390-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics