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Abstract. Neural network policies trained using Deep Reinforcement
Learning (DRL) are well-known to be susceptible to adversarial attacks.
In this paper, we consider attacks manifesting as perturbations in the
observation space managed by the external environment. These attacks
have been shown to downgrade policy performance significantly. We fo-
cus our attention on well-trained deterministic and stochastic neural
network policies in the context of continuous control benchmarks sub-
ject to four well-studied observation space adversarial attacks. To defend
against these attacks, we propose a novel defense strategy using a detect-
and-denoise schema. Unlike previous adversarial training approaches that
sample data in adversarial scenarios, our solution does not require sam-
pling data in an environment under attack, thereby greatly reducing risk
during training. Detailed experimental results show that our technique
is comparable with state-of-the-art adversarial training approaches.

1 Introduction

Deep Reinforcement Learning (DRL) has achieved promising results in many
challenging continuous control tasks. However, DRL controllers have proven vul-
nerable to adversarial attacks that trigger performance deterioration or even
unsafe behaviors. For example, the operation of an unmanned aerial navigation
system may be degraded or even maliciously affected if the training of its con-
trol policy does not carefully account for observation noises introduced by sensor
errors, weather, topography, obstacles, etc. Consequently, building robust DRL
policies remains an important ongoing challenge in architecting learning-enabled
applications.

There have been several different formulations of DRL robustness that have
been considered previously. [13,18] consider DRL robustness against perturba-
tions of physical environment parameters. More generally, [7] has formalized
DRL robustness against uncertain state transitions, and [22] has studied DRL
robustness against action attacks. Similar to [28], our work considers DRL ro-
bustness against observation attacks. Prior work has demonstrated a range of
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Fig. 1. Robots we evaluated in non-adversarial and adversarial scenarios. Robots fall
down and gain less rewards when they are under attack.

strong attacks in the observation space of a DRL policy [11,16,9,28,27,21], all of
which can significantly reduce a learning-enabled system’s performance or cause
it to make unsafe decisions. Because observations can be easily perturbed, ro-
bustness to these kinds of adversarial attacks is an important consideration that
must be taken into account as part of a DRL learning framework. There have
been a number of efforts that seek to improve DRL robustness in response to
these concerns. These include enhancing DRL robustness by adding a regularizer
to optimize goals [1,28] and defending against adversarial attacks via switching
policies [5,25]. There have also been numerous proposals to improve robustness
using adversarial training methods. These often require sampling observations
under online attacks (e.g., during simulation) [9,16,27]. However, while these ap-
proaches provide more robust policies, it has been shown that such approaches
can negatively impact policy performance in non-adversarial scenarios. More-
over, a large number of unsafe behaviors may be exhibited during online attacks,
potentially damaging the system controlled by the learning agent if adversarial
training takes place in a physical rather than simulated environment.

To address the aforementioned challenges, we propose a new algorithm that
strengthens the robustness of a DRL policy without sampling data under ad-
versarial scenarios, avoiding the drawbacks that ensue from encountering safety
violations during an online training process. Our method is depicted in Fig. 2.
Given a DRL policy π, our defense algorithm retains π’s parameters and trains
a detector and denoiser with offline data augmentation. The detector and de-
noiser address problems on when and how to defend against an attack, resp.
When defending π in a possibly adversarial environment, the detector identifies
anomalous observations generated by the adversary, and the denoiser processes
these observations to reverse the effect of the attacks. With assistance from the
detector and the denoiser, the algorithm overcomes adversarial attacks in the
policy’s observation space while retaining performance in terms of the achieved
total reward.
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Fig. 2. Framework

Both the detector and denoiser are modeled with Gated Recurrent Unit Vari-
ational Auto-Encoders (GRU-VAE). This design choice is inspired by recent work
[12,26,24,15,20] that has demonstrated the power of such anomaly detectors and
denoisers. After anomalies enforced by attacks are detected, we need to reverse
the effect of the attacks with a denoiser. However, training such a denoiser re-
quires the observations under attack as input, but sampling such adversarial
observations online is unappealing. To avoid unsafe sampling, our algorithm in-
stead conducts adversarial attacks using offline data augmentation on a dataset
of observations collected by the policy in a non-adversarial environment.

Our approach provides several important benefits compared with previous
online adversarial training approaches. First, because we do not retrain victim
policies, our approach naturally retains a policy’s performance in non-adversarial
scenarios. Second, unlike adversarial training methods that need to sample data
under online adversarial attacks, we only require sampled observations with a
pretrained policy in a normal environment not subject to attacks. Third, the
stochastic components in our detect-and-denoise pipeline (i.e., the prior distri-
bution in the variational autoencoders) provide a natural barrier to defeat adver-
sarial attacks [14,10]. We have evaluated our approach on a range of challenging
MuJoCo [23] continuous control tasks for both deterministic TD3 policies [3] and
stochastic PPO policies [19]. Our experimental results show that compared with
the state-of-the-art online adversarial training approaches [27], our algorithm
does not compromise policy performance in perturbation-free environments and
achieves comparable policy performance in environments subject to adversarial
attacks.

To summarize, our contributions are as follows:

– We integrate autoencoder-style anomaly detection and denoising into a de-
fense mechanism for DRL policy robustness and show that the defense mech-
anism is effective under environments with strong known attacks as well as
their variants and does not compromise policy performance in normal envi-
ronments.
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– We propose an adversarial training approach that uses offline data augmen-
tation to avoid risky online adversarial observation sampling.

– We extensively evaluate our defense mechanism for both deterministic and
stochastic policies using four well-studied categories of strong observation
space adversarial attacks to demonstrate the effectiveness of our approach.

2 Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) is widely used for modeling reinforcement
learning problems. It is described as a tuple (S,A, T,R, γ,O, φ). S and A repre-
sent the state and action space, resp. T (s, a) : S × A → P(S) is the transition
probability distribution. Given current state s and the action a, the Markov
probability transition function T (s, a) returns the probability of a new state s′.
R(s, a, s′) : S×A×R→ R is the reward function that measures the performance
of a given transition (s, a, s′). Let the cumulative discounted reward be R, and
the reward at time t be R(st, at, st+1). Then, R =

∑T
t=0 γ

tR(st, at, st+1), where
γ ∈ [0, 1) is the discounted factor and T is the maximum time horizon. The last
element in the MDP tuple is an observation function φ : S → O which trans-
forms states in the state space S to the observation space O. The task of solving
an MDP is tantamount to finding an optimal policy π : O → A that maximizes
the discounted cumulative reward R.

2.2 Observation Attack

Given a pretrained policy π, the observation attack AB injects noise to the
observation to downgrade the cumulative reward R. B quantifies this noise term.
Typically, B is an `n-norm region around the ground-truth observation. Given
an observation ot, B(ot) = {ôt | ||ôt − ot||n < ε}, where ε is the radius of the `n
norm region. Additionally, attacks can choose when to inject noise. Since it is
crucial to downgrade performance using as few attacks as possible, it is typical to
define a vulnerability indicator 1vul : O → {True, False}. Given an observation
ot, if 1vul(ot) is False, the policy π receives the perturbation-free observation
ot as input; otherwise, the input will be an adversarial observation ôt = AB(ot).

2.3 Defense via Detection and Denoising

The MDP tuple becomes (S,A, T,R, γ,O, φ,AB,1vul) after incorporating an ad-
versary. One way to defend against adversarial attacks is to retrain a policy for
the new MDP. However, such an approach ignores the fact that we already have
a trained policy that performs well in non-adversarial scenarios. Additionally,
the solution of such an MDP may not yield an optimal policy [28]. In contrast,
our approach considers removing the effects introduced by AB,1vul by casting
the adversarial MDP problem back into a standard MDP. To do so, we exploit
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the trained policy and avoid the possibility of failing to find an optimal policy,
even in non-adversarial scenarios. Notably, our approach eliminates the effect
introduced by the vulnerability indicator 1vul and observation attack AB by us-
ing an anomaly detector and a denoiser, resp. Given a sequence of observations
ht = {o0, ..., ot}, the detector is tasked with predicting whether an attack hap-
pens in the latest observation ot. Conversely, the denoiser predicts the ground-
truth observation of ot with ht. If the detector finds an anomaly, the denoiser’s
prediction is used to replace the current observation ot with the ground-truth
observation. Our defense only intervenes when the detector reports an anomaly,
which preserves the performance of pretrained policies when no adversary ap-
pears. Training a VAE denoiser typically requires both the groundtruth inputs
(i.e., the actual observations) and the perturbed inputs (i.e., the adversarial
observations). However, sampling the adversarial observations under online ad-
versarial attacks can be risky. Thus, we prefer sampling adversarial observations
offline.

2.4 Online and Offline Sampling

The difference between online and offline sampling manifests in whether we need
to sample data via executing an action in an environment. Adversarial attacks
can downgrade performance by triggering unsafe behaviors (e.g., flipping an ant
robot, letting a humanoid robot fall), and hence online sampling adversarial
observations can be risky. In contrast, offline sampling does not collect data
via executing actions in an environment and thus does not suffer from potential
safety violations when performing the sampling online. Here, adversarial observa-
tions are sampled offline by running adversarial attacks on a normal observation
dataset (i.e., observations generated in non-adversarial scenarios).

3 Approach

The overall framework of our approach is shown in Fig. 2. Our defense tech-
nique is presented in Section 3.1. It consists of two components: a detector and
a denoiser. First, the anomaly detector checks whether the current environment
observation is an anomaly due to an adversarial attack. When an anomaly is
detected, the denoiser reverses the attack by denoising the perturbed observa-
tion. We evaluate our defense strategy over four attacks described in Section 3.2.
Similar to [11,9], our framework allows an adversary, when given an observation,
to decide whether the observation is vulnerable to an attack.

3.1 Defense

Adversarial training has broad applications to improve the robustness of machine
learning models by augmenting the training dataset with samples generated by
adversarial attacks. In the context of deep reinforcement learning, previous ap-
proaches [13,9,16,27] conduct policy searches in environments subject to such
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attacks, leading to robust policies under observations generated from adversar-
ial distributions. As mentioned earlier, our method is differentiated from these
approaches by using a detect-and-denoise schema learnt from offline data aug-
mentation while keeping pretrained policies.

Prior work has shown that the LSTM-Autoencoder structure outperforms
other methods in various anomaly settings [12,26,24] including anomaly detec-
tion in real-world robotic tasks [15]. Inspired by the success of this design choice,
we choose to implement both the detector and denoiser as Gated Recurrent Unit
Variational Auto-Encoders (GRU-VAE).

GRU GRU GRU GRUEn
co

de
r

z1 z2 z3 zt

Linear Linear Linear Linear Linear Linear Linear Linear

GRU GRU GRU GRUD
ec

od
er

Linear Linear Linear Linear

o1 o2 o3 ot

log log log log 

o'1 o'2 o'3 o't

Fig. 3. GRU-VAE. The input of the encoder is a sequence of observations. These
observations pass a GRU layer and two different linear layers to generate the mean µt

and log variance log σt of a Gaussian distribution. The latent variable zt is sampled
from this Gaussian distribution, and is passed to the decoder. The decoder decodes zt
with a GRU and a linear layer. The decoder is a deterministic model. For the detector,
the output of the decoder is trained to be the same as the input observation sequence.
For the denoiser, the output is trained to remove perturbations injected by adversaries.

Detector The structure of our detector is depicted in Figure 3. The detector
learns what normal observation sequences should be. We train it with an observa-
tion dataset Dnormal sampled online with a pretrained policy in non-adversarial
environments. The objective function is the standard variational autoencoder
lower bound [2],

Ldet = Eqθq (zt|ot,hot )

[
log pθp(ot | zt, hzt )

]
−DKL

(
qθq (zt | ot, hot )‖pr(zt)

)
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where θq is the parameters of encoder qθq and θp is the parameters of decoder
pθp ; ot ∈ Dnormal is the observation at time t; hot and hzt are the hidden states
for the encoder and decoder, resp.; and zt is sampled from the distribution
parameterized by qθq . Decoding the latent variable zt reconstructs the input
observation ot. Eqθq (zt|ot,hot )

[
log pθp(ot | zt, hzt )

]
is known as the reconstruction

objective, the maximization of which increases the likelihood of reconstructing
the observations sampled by the pre-trained policy. DKL

(
qθq (zt | ot, hot )‖pr(zt)

)
is the KL-divergence between the distribution qθq (zt | ot, hot ) generated by the
encoder and the prior distribution pr(zt), which serves as the KL regularizer
that makes these two distributions similar. Following [15], we set pr(zt) as a
Gaussian distribution whose covariance is the identity matrix I, but leave the
mean of pr(zt) to be µzt instead of 0. The learnable µzt allows the mean of
the prior distribution to be conditioned on input observations. This modified
GRU-VAE is different from a general GRU-VAE model which assumes the prior
distribution is a fixed normal distribution. It depends on the decoder to provide
prior distributions, which is crucial for a detector as shown in [15].

The detector reports an anomaly observation when a decoded observation is
significantly different from the encoded observation, measured by the `∞-norm
between the input observation ot and the output observation o′t. The detector
reports the anomaly if the `∞-norm between ot and o′t is greater than a threshold
Canomaly using by the anomaly detection indicator function:

1anomaly(ot, o
′
t) := `∞(ot, o

′
t) > Canomaly

Denoiser The denoiser learns to map anomaly observations found by the de-
tector to the ground-truth normal observations. The objective function of the
denoiser is:

Lden = Eq′θ
q′

(zt|ōt,hōt )

[
log p′θp′ (ot | zt, h

z
t )
]
−DKL

(
q′θq′ (zt | ōt, h

ō
t )‖pr(zt)

)
Compared to the detector’s objective function Ldet, the input to the encoder
q′θq′ is replaced by an observation ōt ∈ Dadv ∪Dnormal and hidden state hōt . The
encoder of the denoiser maps ōt and hidden state hōt to a latent variable zt that
is used by the decoder p′θp′ to generate the ground-truth observation ot. We
also leave the mean of pr(zt) to be µzt as in the detector. Training the denoiser
requires the observation ōt, which we have to sample by conducting adversarial
attacks.

Sampling adversarial observations online is generally viewed to be a costly
requirement because it must handle potentially unsafe behaviors that might
manifest; these behaviors could damage physical agents (e.g., robots) during
training (e.g., by causing a robot to fall down). In contrast, we generate these
adversarial observations offline. First, since a well-trained policy already exists,
we can sample a normal observation dataset Dnormal online. Then, we directly
apply adversarial attacks to this dataset. Given an adversary AB, we build an
adversarial dataset Dadv = {AB(o) | o ∈ Dnormal}. In Section 3.2, we will
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demonstrate why two types of adversarial attacks can generate the Dadv without
interacting with an environment under adversarial attacks.

Robustness Regularizer A robustness regularizer [28] can also be integrated
into our defense schema. The intuition behind the robustness regularizer is that
if we can minimize the difference between the action distribution under normal
observations and the action distribution under attacks, the robustness of our
network can be improved. A robustness regularizer measures this difference.

Assuming a denoiser den and pretrained policy π, the action a = π(den(o)).
We treat π and den as one network πden. Given an attack ô = AB(o) and the
policy covariance matrix Σ, the robustness regularizer for stochastic PPO is

Rppo = (πden (AB(o))− πden (o)) ·Σ−1 · (πden (AB(o))− πden (o))

and the robustness regularizer for deterministic TD3 is:

Rtd3 = ‖πden (AB(o))− πden (o)‖2 .

Following [27], the attack AB considered here is the opposite attack that will
be introduced in Sec. 3.2. The opposite attack depends on the policy network.
When computing the robustness regularizer, we attack πden instead of π. The
theoretical foundation for minimizing the difference between action distributions
is provided by Theorem 5 in [28]. It shows the total variance between the normal
action distribution and the action distribution generated by observation ô under
attack can bound the value function (i.e., performance) difference. However,
unlike [27] that trains a policy with a robustness regularizer, we achieve this by
training the parameters of the denoiser den, and retain the parameters of the
pretrained policy π.

The regularizers can be added with the denoiser’s objective function directly.
Then, according to the policy type, we optimize Lden + Rppo or Lden + Rtd3 to
update the denoiser’s parameters. Optimizing the denoiser’s objective function
and robustness regularizer focus on different goals. A small value of Lden means
the output of the denoiser is close to the groundtruth observations, while a small
Rppo or Rtd3 means the action distributions in adversarial and non-adversarial
scenarios are similar.

3.2 Observation Attacks

Attacks We evaluate our defense on four well-studied categories of observation
attacks. In this section, we briefly introduce these attacks and explain why the
opposite attack and Q-function attack can be used to generate offline adversarial
datasets without sampling under adversarial scenarios.

Opposite Attack The opposite attack appears in [6,16,28,11]. By perturbing ob-
servations, this attack either minimizes the likelihood of the action with the
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highest probability [6,16,28] or maximizes the likelihood of the least-similar ac-
tion [11] in discrete action domains. We choose to minimize the likelihood of the
preferred action. The attacked observation ôt is computed as:

ôt = argmax
ôt∈B(ot)

lop(ot, ôt), (1)

where B(ot) signifies all the allowed perturbed observations around ot. For stochas-
tic policies, lop(ot, ôt) = (π(ot)−π(ôt))Σ

−1(π(ot)−π(ôt)), where π(ot) and π(ôt)
are the mean of the predicted Gaussian distribution, and Σ is the policy covari-
ance matrix. For a deterministic TD3 algorithm, the difference is defined as the
Euclidean distance between the predicted actions, lop(ot, ôt) = ||π(ot)−π(ôt)||2.
This attack only depends on the policy π. Given a normal dataset Dnormal, we
can apply this attack on every observation in Dnormal to generate the adver-
sarial dataset Dadv = {AB(o) | o ∈ Dnormal} without any interaction with the
environment. Since generating Dnormal and applying the opposite attack does
not sample under adversarial scenarios. Thus, generating Dadv does not require
sampling under adversarial scenarios.

Q-function Attack [9,16,28] compute observation perturbations with the Q-
function Q(ot, at). This attack only depends on the Q function Q(ot, at). The Q
function sometimes comes with trained policies (e.g., TD3). When the Q func-
tion is not accompanied by trained policies (e.g, PPO), the Q-function can be
learnt under non-adversarial scenarios [27]. We want to find a ôt such that it
minimizes the Q under budget B. Thus, the attacked observation ôt is computed
as

ôt = argmin
ôt∈B(ot)

Q(ot, π(ôt)) (2)

We can generate the adversarial dataset Dadv with Dnormal and Q(ot, at). No-
tice that getting Dnormal and Q(ot, at) does not require interacting with envi-
ronments under attacks. Therefore, the Q-function attack can also generate the
Dadv = {AB(o) | o ∈ Dnormal} without sampling under adversarial scenarios.

Optimal Attack The optimal attack learns an adversarial policy πadv adding
perturbation ∆ot to the observation ot. For example, [27] demonstrated this
strong attack over MuJoCo benchmarks. [4] learns such an adversarial policy in
two-player environments. The action outputted by the adversarial policy is ∆ot ,
and the input of πadv is ot. The perturbed observation is

ôt = projB(ot +∆ot) (3)

where projB is a projection function that constrains the perturbed observation ôt
to satisfy the attack budget B. The adversarial policy is trained to minimize the
cumulative discounted reward R. Importantly, training this adversarial policy
πadv requires adversarial sampling online. Thus, we did not adopt it to generate
our adversarial dataset Dadv.
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Enchanting Attack This type of attack first appeared in [11]. It integrates a
planner into the attack loop. The planner generates a sequence of adversarial
actions, and the adversary crafts perturbations to mislead neural network policies
to output adversarial action sequences. At time step t, an adversarial motion
planner generates a sequence of adversarial actions [at,0, at,1, ..., at,T−t] guiding
the agent to perform poorly. Since we attack the observation space and cannot
change the action directly, we need to perturb observations to mislead the policy
to predict the planner’s adversarial actions. Given the policy network π, the
perturbed observation is

ôt = argmin
ôt∈B

||π(ôt)− at,0||2 (4)

The at,0 is the target adversarial action. In our attack, we call the planner at ev-
ery step and use the first action as an adversarial action, which avoids the errors
caused by the deviation between the actual trajectory and planned trajectory,
and thus strengthens the enchanting attack. For the continuous control problem,
we use a Cross-Entropy Motion (CEM) planner [8] for adversarial planning. Gen-
erating or applying an adversarial planner typically requires online adversarial
sampling. Therefore, we did not generate the Dadv with the enchanting attack.

To summarize, we evaluate our defense over four types of attacks. However,
we only generate the adversarial dataset Dadv with the opposite attack and Q-
function attack because they do not require risky online adversarial sampling.
Sec. 4 shows that the denoiser trained with the adversarial dataset generated
from these two attacks alone performs surprisingly well even when used in defense
against all the four attacks we consider.

When to Attack Since we want to minimize the reward with as few pertur-
bations as possible, it is crucial to attack when the agent is vulnerable. We use
the value function approximation as the indicator of vulnerability. When the
value function predicts a certain observation has a small future value, such an
observation is likely to cause a lower cumulative reward. A lower cumulative
reward shows either the vulnerability of this observation itself (e.g., a running
robot is about to fall) or the vulnerability of the corresponding policy (i.e., the
policy would perform poorly given this observation). Thus, we can use the value
function approximation to choose the time to trigger our attack. Given an ob-
servation ot and the value function V , by choosing a threshold Cvul, we only
trigger the attack when V (ot) < Cvul. The vulnerability indicator is

1vul(ot) := V (ot) < Cvul

We use the value function learned during training for the PPO policy. Be-
cause V (ot) =

∫
at∼π(ot)

Q(ot, at) and at = π(ot) for a deterministic policy,
V (ot) = Q(ot, π(ot)). Hence, we can compute the value function of TD3 with
the learned Q function and policy. We tune Cvul to achieve the strongest attack
while minimizing the number of perturbations triggered.
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4 Experiments

We evaluate our approach on five continuous control tasks with respect to a
stochastic PPO policy and a deterministic TD3 policy. The PPO policies were
trained by ourselves, and the TD3 policies use pretrained models from [17]. Our
experiments answer the following questions.

Q1. Does our defense improve robustness against adversarial attacks?
Q2. How does our defense impact performance in non-adversarial scenarios?
Q3. How does our approach compare with state-of-the-art online adversarial

training approach?
Q4. How is the performance of our detectors and denoisers in terms of accuracy?
Q5. How does our defense perform under adaptive attacks?

4.1 Rewards under Attack w/wo Defense (Q1)

In this section, we show how our defense improves robustness. We report attack
and defense results on the pretrained policies in Table 1. The “Benchmark” and
“Algo” columns are the continuous control tasks and the reinforcement learning
policies, resp. The “Dimension” column contains the dimensionality information
of state and action space. The ε column shows the ε of attack budget B. The ε of
“Hopper”, “HalfCheetah”, and “Ant” are the same as the attack budget provided
in [27]; we increased ε in “Walker2d” to 0.1. The “Humanoid” with the highest
observation and action dimension is not evaluated in [27]. We choose ε = 0.15
for “Humanoid”.

Table 1. Benchmark Information and Rewards under Attack w/wo Defense

Benchmark Algo ε
Dimension Attack/Defense

state action Opposite Q-function Optimal Enchanting

Hopper TD3 0.075 11 3 390/2219 960/3328 267/2814 1629/3287
PPO 271/2615 700/3569 247/3068 217/2751

Walker2d TD3 0.1 17 6 751/4005 478/4329 187/4772 762/4538
PPO 241/1785 3510/4737 -38/1393 1582/1741

HalfCheetah TD3 0.15 17 6 1770/8946 1603/8471 1017/8174 1802/8838
PPO 1072/6115 1665/4218 833/3765 274/4477

Ant TD3 0.15 111 8 603/3516 -46/2137 -893/2809 522/4729
PPO -351/5404 -157/1042 558/4574 196/5497

Humanoid TD3 0.15 376 17 431/4849 454/4042 585/5130 420/5125
PPO 531/3161 406/3508 415/3630 396/1695

We provide attack and defense results in the “Attack/Defense” column. The
four sub-columns in this column are the attacks we described in Section 3.2.
The numbers before the slash are the cumulative rewards gained under attack.
In this table, we assume the adversary is not aware of our defense’s existence.
The experiment results show that these strong attacks can significantly decrease
the benchmarks’ rewards, and our defense significantly improved rewards for all
attacks.
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4.2 Non-adversarial Scenarios (Q2) and Comparison (Q3)

We evaluate rewards in non-adversarial scenarios and compare them with ATLA
[27], a state-of-the-art online adversarial training approach, in this section. Ad-
versarial attacks do not always happen. Therefore, maintaining strong perfor-
mance in normal cases is essential. The “Non-adversarial” column summarizes
the reward gained by policies without any adversarial attack injected. Rewards
are computed as the average reward over 100 rollouts. The “Pre.” column shows
the cumulative reward of pretrained policies, while the “ATLA” column is the
reward gained by the ATLA policy in [27]. The “Ours” column is the reward
gained by the policies under our defense. The numbers in parentheses are the
percentages of rewards preserved when compared with the pretrained policies,
which are computed with reward in “Ours” divided by reward in “Pre.”. Observe
that the introduction of the detector preserves the performance of pretrained
policies. Because our defense only intervenes when it detects anomalies, it has
a mild impact on the pretrained policies in non-adversarial cases. In contrast,
ATLA policies do not perform as well as our defended policies when no adversary
appears on all the benchmarks.

Table 2. Rewards in Non-adversarial Scenarios and Comparison

Benchmark Algo Non-adversarial Avg./Min (Best Attack)

Pre. ATLA Ours ATLA Ours

Hopper TD3 3607 3220 3506(0.97) 2192/1761(opt) 2912/2219(ops)
PPO 3206 3201(1.00) 3001/2615(ops)

Walker2d TD3 4719 3819 4712(1.00) 1988/1430(opt) 4411/4005(ops)
PPO 4007 3980(0.99) 2414/1393(opt)

HalfCheetah TD3 9790 6294 8935(0.91) 5104/4617(enc) 8607/8174(opt)
PPO 8069 7634(0.95) 4644/3765(opt)

Ant TD3 5805 5313 5804(1.00) 4310/3765(q) 3298/2137(q)
PPO 5698 5538(0.97) 4129/1042(q)

Humanoid TD3 5531 4108 5438(0.98) 3311/2719(q) 4786/4042(q)
PPO 4568 4429(0.97) 2999/1695(enc)

The column “Avg./Min.(Best Attack)” show statistics comparing ATLA and
our defense under the four attacks. The numbers before the slash are the average
reward gained under attacks, and the numbers after the slash are the lowest
rewards among all the attacks. The abbreviations in parentheses are the best
attack that achieves the lowest reward, where “ops” means the opposite attack,
“q” means the Q-function attack, “opt” means the optimal attack, and “enc”
means the enchanting attack. The results show that our defense trained with data
sampled under non-adversarial scenarios provides comparable results with the
riskier online adversarial training approach. Observe that 6 out of 10 benchmarks
have a higher reward than ATLA for the average rewards over attacks. For the
worst rewards over attacks, our defense has a higher reward than the ATLA on
5 of 10 benchmarks. The result is surprising considering that we do not sample
any adversarial observations online.
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4.3 Detector and Denoiser (Q4)

The detector’s performance is crucial for our defense since it prevents unneces-
sary interventions. We report the detectors’ accuracy in non-adversarial scenarios
and their F1 scores and false-negative rates under attack. The accuracy measures
detectors’ performance when no attack appears, and the F1 score measures how
well the detectors perform when policies are under attack. Meanwhile, the false-
negative rate tells us the percentage of adversarial attacks that are not detected.
We present these results in the “Detector” column of Table 3.

Table 3. Detector and Denoiser Performance

Benchmark Algo
Detector Denoiser

Acc. F1 Score False Negative Rate Mean Absolute Error

Normal Ops Q Opt Enc Ops Q Opt Enc Ops Q Opt Enc

Hopper TD3 0.99 0.82 0.98 0.88 0.99 0.00 0.01 0.07 0.00 0.030 0.023 0.032 0.024
PPO 0.99 0.97 0.94 0.94 0.95 0.00 0.00 0.00 0.00 0.026 0.018 0.034 0.038

Walker2d TD3 0.99 0.99 0.99 0.99 0.99 0.01 0.01 0.02 0.01 0.030 0.032 0.042 0.045
PPO 0.95 0.97 0.93 0.95 0.99 0.05 0.01 0.00 0.01 0.041 0.030 0.033 0.037

HalfCheetah TD3 0.95 0.99 0.98 0.98 0.96 0.00 0.00 0.00 0.00 0.049 0.048 0.050 0.043
PPO 0.99 0.99 0.98 0.96 0.96 0.00 0.01 0.02 0.01 0.057 0.041 0.046 0.048

Ant TD3 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.022 0.022 0.022 0.023
PPO 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.023 0.024 0.027 0.026

Humanoid TD3 0.99 0.96 0.97 1.00 0.96 0.08 0.04 0.00 0.07 0.048 0.047 0.043 0.046
PPO 0.99 0.99 0.99 0.99 0.99 0.00 0.00 0.00 0.00 0.055 0.045 0.048 0.050

The detector is expected only to report negative in non-adversarial scenarios.
Since there is no adversarial observation (i.e., positive sample) in non-adversarial
scenarios, we measure the detector’s quality with accuracy instead of the F1
score. The 3rd column in Table 3 reports the accuracy of all the detectors in
non-adversarial scenarios. The worst accuracy is 0.95. The high accuracy explains
why our defense retains the performance of pretrained policies in non-adversarial
cases. We measure the quality of detectors under attack with the F1 scores
and false-negative rate. When attacking Hopper’s PPO policy with the opposite
attack and optimal attack, the F1 scores are 0.82 and 0.88, respectively. However,
their false negative rates are 0.00 and 0.01, respectively. The low false-negative
rates show that our detectors ensure the denoiser would be triggered under
attack. Moreover, the data shows that the relatively low F1 score was caused
by false positives, which means the defense will be cautious and use denoised
observations more often. The left data has an F1 score higher than 0.94 and a
false negative rate lower than 0.04, which supports our claim that the detector
works well when the policies are under attack.

The Mean Absolute Errors (MAEs) between the outputs of the denoiser
and groundtruth observations are reported in the “Denoiser” column in Table 3.
Although we only train the denoiser with the augmented data generated with the
opposite and Q-function attack, the MAE of the optimal attack and enchanting
attack is close to the MAE of the opposite attack and Q-function attack. This
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explains why our defense also works well on the opposite and enchanting attacks,
as shown in Table 1.

4.4 Adaptive Attack (Q5)

We further evaluated the robustness of our defense under adaptive attacks. The
defense in Section 4.1 is evaluated when the attacks are not aware of the existence
of our defense. However, once the adversaries realize that we have upgraded our
defense, they can jointly attack our defense and pretrained policies. When the
adversary can access both the detector and denoiser, it can mislead the detector
to ignore anomalies with adversarial observations. We briefly introduce the key
idea of adaptive attacks here. A more formal description of our adaptive attack
design is provided in Appendix B.

The adversary needs to attack our defense and the pretrained policy jointly.
Firstly, we consider how to attack the denoiser. Under our defense, the action at
is computed with a sequential model at = π(den(ot)); we thus replace the pre-
trained policy π(ot) with π(den(ot)) and attack this sequential model. Secondly,
adaptive attacks also need to fool the detector. Because the anomaly is defined
with respect to being greater than a threshold, a malicious observation should
decrease the `∞-norm in 1anomaly. This objective can be defined with a loss
term ldet(ot) = ||det(ot)− ot||∞. For the opposite attack, q-function attack, and
enchanting attack, in addition to using π(den(ot)) to replace π(ot), we optimize
ldet(ot) jointly with Eq. (1), Eq. (2), and Eq. (4) respectively. For the optimal
attack, we train the adversarial policy with the involvement of our defense.

Table 4. Adaptive Attack (% change in reward)

Benchmark Algo Ops Q Opt Enc Min Max

Hopper TD3 0.63 0.06 0.17 0.04 0.04 0.63
PPO -0.16 -0.18 -0.12 -0.11 -0.18 -0.11

Walker2d TD3 0.19 0.10 0.00 0.05 0.00 0.19
PPO 0.12 -0.18 -0.16 0.17 -0.18 0.17

HalfCheetah TD3 -0.14 0.06 0.08 0.03 -0.14 0.08
PPO -0.23 0.10 0.17 0.20 -0.23 0.20

Ant TD3 -0.28 -0.17 -0.14 -0.18 -0.28 -0.14
PPO -0.24 0.40 0.11 -0.22 -0.24 0.40

Humanoid TD3 0.09 0.28 -0.03 -0.06 -0.06 0.28
PPO 0.28 0.23 0.01 0.06 0.01 0.28

We use the defense rewards in Table 1 (numbers after the slash) as baselines
and report the percentages by which reward changes under adaptive attacks in
Table 4. The benchmark column contains the task names and the policy types.
We have introduced the attack name abbreviations in Section 4.1, and the re-
wards changes under these attacks are reported from column 2 to column 5.
The “Min” and “Max” columns are the minimal and maximal changes compara-
ble with the baseline rewards. In the worst case, the adaptive attack causes the
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performance on Ant-TD3 to decrease 28% under the opposite attack. We can
observe that some rewards increase under the adaptive attack. This is because
jointly attacking the detector can be challenging for the adversary. Since the
detector is also a GRU-VAE, the first problem the adversary needs to address
is the stochasticity introduced by the detector and denoiser themselves. More-
over, the adversary needs to fool the policy and detector simultaneously, which
increases the difficulty of attacking our defense.

5 Conclusion

This paper proposes a detect-and-denoise defense against the observation attacks
on deep reinforcement learning. Our defense samples the adversarial observations
offline and thus avoids the risky online sampling under adversarial attacks. In the
absence of an adversary, our defense does not compromise performance. We eval-
uated our approach over four strong attacks with five continuous control tasks
under both stochastic and deterministic policies. Experiment results show that
our approach is comparable to previous online adversarial training approaches,
provides reasonable performance under adaptive attacks, and does not sacrifice
performance in normal (non-adversarial) settings.
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Appendix A: Performance Bound

We prove the performance bound for Gaussian stochastic policy with constant
independent variance and deterministic policy on fully-observable MDP. Given
a policy π, value functions Vπ(o) is the cumulative discounted future reward of
the observation o. We care about the performance changes before and after at-
tacks. The performance changes can be measured by the value function difference
between the pretrained policy and the policy under attack.

Theorem 5 in [28] provides an upper bound on the max difference between
value functions with different action distributions, formally,

max
o∈S

{
Vπ(o)− Vπ(o′)

}
≤ αmax

o∈S
max
o′∈B(o)

DTV(π(· | o), π(· | o′)) (5)

where DTV(π(· | o), π(· | o′)) is the total variation distance between π(· | o) and
π(· | o′), and α is a constant that does not depend on π. Assuming that the
policy network is Lipschitz continuous, we show that as the denoiser accuracy
improves, the difference between value functions reduces.

Theorem 1. Given a Gaussian stochastic policy with constant independent vari-
ance π and its value function Vπ(o), assuming that the policy is Lipschitz con-
tinuous, for all o ∈ O we have

max
o∈S

{
Vπ(o)− Vπ(ô)

}
≤ βmax

o∈O
max

o′∈den(B(o))
||den(ô)− o||2 (6)

where den : O → O is the denoiser, ô = AB(o) and β is a constant that does not
depend on π.

Theorem 1 tells us that the performance difference before and under attack
is bounded by the max Euclidean difference between the normal observation
and the output of the denoiser. A more accurate denoiser gives a tighter upper
bound, and thus better preserves pretrained policy’s performance.

Proof. From Pinsker’s inequality,

DTV (π(·|o), π(·|o′)) ≤
√

1

2
DKL(π(·|o)||π(·|o′)) (7)

We assume that our stochastic policies follow a Gaussian distribution with
constant diagonal covariance matrix. Supposing that π(·|o)’s mean is µ1 and
covariance matrix is Σ1, and π(·|o′)’s mean is µ2 and covariance matrix is Σ2;
o, o′ ∈ Rd,

DKL(π(·|o)||π(·|o′))

=
1

2

(
log
|Σ2|
|Σ1|

− d+ tr
{
Σ−1

2 Σ1

})
+

1

2
(µ2 − µ1)

T
Σ−1

2 (µ2 − µ1)
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Since Σ1 and Σ2 are constant matrices, 1
2

(
log |Σ2|
|Σ1| − d+ tr

{
Σ−1

2 Σ1

})
is

also a constant. Thus, there must exist a constant C1 ∈ R+ such that ∀µ1, µ2,

1

2

(
log
|Σ2|
|Σ1|

− d+ tr
{
Σ−1

2 Σ1

})
+

1

2
(µ2 − µ1)

T
Σ−1

2 (µ2 − µ1)

≤ C1 (µ2 − µ1)
T
Σ−1

2 (µ2 − µ1)

All the elements in Σ−1
2 is positive, so there must exist C2 ∈ R+ such that

∀µ1, µ2,

(µ2 − µ1)
T
Σ−1

2 (µ2 − µ1) ≤ C2 ‖µ2 − µ1‖22

Thus,
DKL(π(·|o)||π(·|o′)) ≤ C1 (µ2 − µ1)

T
Σ−1

2 (µ2 − µ1)

≤ C1C2 ‖µ2 − µ1‖22
(8)

Now assuming our policy network is Lipschitz bounded, we have a constant L
such that

||µ2 − µ1||2 ≤ L||o′ − o||2 (9)

When integrating our denoiser, o′ = den(ô) and o′ ∈ den(B(o)); combining (5),
(7), (8), and (9), we get

max
o∈S

{
Vπ(o)− Vπ(AB(o))

}
≤ αmax

o∈O
max

o′∈den(B(o))

√
1

2
DKL(π(·|o)||π(·|o′))

≤ αmax
o∈O

max
o′∈den(B(o))

√
1

2
C1C2 ‖µ2 − µ1‖22

= αmax
o∈O

max
o′∈den(B(o))

√
1

2
C1C2 ‖µ2 − µ1‖2

≤ αmax
o∈O

max
o′∈den(B(o))

√
1

2
C1C2L ‖o′ − o‖2

= αL

√
1

2
C1C2 max

o∈O
max
ô∈B(o)

‖den(ô)− o‖2

= βmax
o∈O

max
o′∈B(o)

‖den(ô)− o‖2

(10)

where β = αL
√

1
2C1C2.

For deterministic policy, we can add an independent Gaussian noise around
its action (i.e., using the predicted action as the mean of a Gaussian distribution)
and gain the same results. ut

This proof tells us that the accuracy of denoiser bounds the performance
difference between adversarial and non-adversarial scenarios. Additionally, we
want to point out that the (5) supports why the robustness regularizer works.



Defending Obs. Attacks via Detection and Denoising 19

Optimizing the robustness regularizer reduces the distance between the action
distributions of pretrained policy and when it is under attack. However, this is
achieved by training the denoiser, which preserved the parameters of pretrained
policy.

Appendix B: Adaptive Attack Details

Our defense mechanism can also be the victim of all the four types of attacks.
The adaptive attacks focus on two folders. First, they need to fool the detector
so that the detector fails to alter attacked observations. This can be achieved by
maximizing ldet(ot, ôt),

ldet(ot, ôt) = ||det(ôt)− ot||∞.

Second, the adaptive attacks should consider both the denoiser and the pre-
trained policy jointly to bypass the effects introduced by our denoiser. In other
words, the adaptive attack needs to attack the sequential model πden instead of
the pretrained policy π.

B.1 Opposite Adaptive Attack

The opposite attack maximizes the distance between action distribution in non-
adversarial and adversarial scenarios. When considering the adaptive attacks,
we compute the attacked observation ô with (11).

ôt = argmax
ôt∈B(ot)

(
l′op(ot, ôt) + ldet(ot, ôt)

)
, (11)

For Gaussian stochastic policy,

l′op(ot, ôt) = (πden(ot)− πden(ôt))Σ−1(πden(ot)− πden(ôt)),

and for deterministic policy,

lop(ot, ôt) = ‖πden(ot)− πden(ôt)‖2.

B.2 Q-function Adaptive Attack

The Q-function attack minimizes the Q-function prediction in non-adversarial
and adversarial scenarios. We compute the attacked observation ô with (12) for
adaptive attacks.

ôt = argmin
ôt∈B(ot)

(Q(ot, πden(ôt))− ldet(ot, ôt)) (12)
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B.3 Optimal Adaptive Attack

The optimal attack requires an adversarial policy to compute the perturbations
added to normal observations ∆ot = πadv(ot).

ôt = projB(ot +∆ot) (13)

For adaptive attack, the adversarial policy πadv is trained when the victim poli-
cies are augmented with our defense. The detailed training pipeline for an ad-
versarial policy can be found in [27].

B.4 Enchanting Adaptive Attack

In step t, we generate the at,0 with an adversary CEM planner, and compute
the adversarial observation with (14).

ôt = argmin
ôt∈B

(||πden(ôt)− at,0||2 − ldet(ot, ôt)) (14)

Appendix C: Experiment Settings and Hyperparameters

C.1 Dataset Size

The normal trajectory dataset of Hopper, Walker2d, and HalfCheetah has 10, 000
trajectories, and each trajectory has 1, 000 observations. Ant, Humanoid’s datasets
have 20, 000 trajectories, and each trajectory has 1, 000 observations. When
training the denoiser, we generate Dadv with the same number of trajectories
via the opposite attack and Q-function attack on each benchmark.

C.2 Canomaly and Cvul

Canomaly decides how sensitive the detectors are. We tuned Canomaly to ensure
that the false-negative rate is close to 0 and then make the F1 score as high as
possible. The Canomaly can vary for each training on a detector, but it is easy to
tune Canomaly with a simple linear search or Bayesian optimization in a short
time.

Cvul controls the frequency of attack. We hope to downgrade the performance
with the low attack frequency. Thus, we tuned Cvul to ensure the performance
decreased as significantly as [27] while the attack frequency was as low as possi-
ble. The tuning process can also be done with a simple linear search or Bayesian
optimization in a short time.
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Table 5. Detector and Denoiser Hyperparameters

Hopper Walker2d HalfCheetah Ant Humanoid

Encoder Hidden Size 64 64 64 256 256
Encoder #. Layer 1 1 1 1 2

Decoder Hidden Size 64 64 64 256 256
Decoder #. Layer 1 1 1 1 2

Embedding Size 64 64 64 64 128

Batch Size 128 128 128 256 1024
Epoch 50 50 50 100 200
Optimizer Adam
Learning Rate 1× 10−3

C.3 Detector and Denoiser Hyperparameters

We report the hyperparameters of our detector and denoiser in Table 5. The
detector and denoiser on the same benchmark share the same hyperparameters.

Both the encoder and decoder are GRU. Thus, we report their “Hidden Size”
and “Encoder/Decoder #. Layers” (Number of Layers) in Table 5. The “Em-
bedding Size” is the size of the latent space of a GRU-VAE. “Batch Size” and
“Epoch” are the batch size and epoch when training detector and denoiser. For
all detector and denoiser, the optimizer training the denoiser and detector is
Adam, and the learning rate is 1× 10−3.
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