Abstract
Vision transformers have recently shown remarkable performance in various visual recognition tasks specifically for self-supervised representation learning. The key advantage of transformers for self supervised learning, compared to their convolutional counterparts, is the reduced inductive biases that makes transformers amenable to learning rich representations from massive amounts of unlabelled data. On the other hand, this flexibility makes self-supervised vision transformers susceptible to overfitting when fine-tuning them on small labeled target datasets. Therefore, in this work, we make a simple yet effective architectural change by introducing new learnable masked tokens to vision transformers whereby we reduce the effect of overfitting in transfer learning while retaining the desirable flexibility of vision transformers. Through several experiments based on two seminal self-supervised vision transformers, SiT and DINO, and several small target visual recognition tasks, we show consistent and significant improvements in the accuracy of the fine-tuned models across all target tasks.
This work is partially supported by KTH Digital Futures and Wallenberg AI, Autonomous Systems and Software Program (WASP).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We omit LN and MLP layers in between for convenience.
- 2.
We remove the layer index l, and replace it with the image index k for convenience.
References
Vaswani, A., et al.: Attention is all you need. Advances In: Neural Information Processing Systems, pp. 5998–6008 (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. ArXiv Preprint ArXiv:2010.11929. (2020)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A. & Jégou, H. Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357 (2021)
Bahdanau, D., Cho, K. & Bengio, Y.: Neural machine translation by jointly learning to align and translate. ArXiv Preprint ArXiv:1409.0473. (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. ArXiv Preprint ArXiv:1409.1556. (2014)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.: Densely connected convolutional networks. In: Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)
Atito, S., Awais, M., Kittler, J.: SIT: Self-supervised vision transformer. ArXiv Preprint ArXiv:2104.03602 (2021)
Caron, M., Touvron, H., Misra, I., JĂ©gou, H., Mairal, J., Bojanowski, P., Joulin, A.: Emerging properties in self-supervised vision transformers. ArXiv Preprint ArXiv:2104.14294 (2021)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. ArXiv Preprint ArXiv:2003.04297 (2020)
Grill, J., et al.: Bootstrap your own latent: A new approach to self-supervised learning. ArXiv Preprint ArXiv:2006.07733 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Prillo, S., Eisenschlos, J.: SoftSort: a continuous relaxation for the argsort operator. International Conference on Machine Learning, pp. 7793–7802 (2020)
Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. ArXiv Preprint ArXiv:1803.07728 (2018)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. ArXiv Preprint ArXiv:2006.09882 (2020)
Krizhevsky, A., Hinton, G., Others Learning multiple layers of features from tiny images. (Citeseer 2009
Deng, J., Dong, W., Socher, R., Li, L., Li, K., Fei-Fei, L. ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)
Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223 (2011)
Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., Perona, P.: Caltech-UCSD birds 200 (California Institute of Technology, 2010)
Yu, X., Zhao, Y., Gao, Y., Yuan, X., Xiong, S.: Benchmark platform for ultra-fine-grained visual categorization beyond human performance. In: Proceedings Of The IEEE/CVF International Conference on Computer Vision, pp. 10285–10295 (2021)
Zhao, J., Zhang, Y., He, X., Xie, P.: Covid-CT-dataset: a CT scan dataset about Covid-19. ArXiv Preprint ArXiv:2003.13865 490 (2020)
Brown, T., et al.: Language models are few-shot learners. ArXiv Preprint ArXiv:2005.14165 (2020)
Lepikhin, D., et al.: Gshard: scaling giant models with conditional computation and automatic sharding. ArXiv Preprint ArXiv:2006.16668 (2020)
Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2009)
Noroozi, M., Favaro, P.: unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5
Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40
Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings Of The IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)
Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. ArXiv Preprint ArXiv:1807.03748 (2018)
Zheng, H., Fu, J., Mei, T., Luo, J.: Learning multi-attention convolutional neural network for fine-grained image recognition. In: Proceedings Of The IEEE International Conference on Computer Vision, pp. 5209–5217 (2017)
Wei, X., Xie, C., Wu, J., Shen, C.: Mask-CNN: localizing parts and selecting descriptors for fine-grained bird species categorization. Pattern Recogn. 76, 704–714 (2018)
Nawaz, S., Calefati, A., Caraffini, M., Landro, N., Gallo, I.: Are these birds similar: Learning branched networks for fine-grained representations. In: 2019 International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–5 (2019)
Wang, Q., Li, B., Xiao, T., Zhu, J., Li, C., Wong, D., Chao, L.: Learning deep transformer models for machine translation. ArXiv Preprint ArXiv:1906.01787 (2019)
Baevski, A., Auli, M.: Adaptive input representations for neural language modeling. ArXiv Preprint ArXiv:1809.10853 (2018)
Choe, J.., Shim, H.: Attention-based dropout layer for weakly supervised object localization. In: Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition, pp. 2219–2228 (2019)
Yun, S., Han, D., Oh, S., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings Of The IEEE/CVF International Conference On Computer Vision, pp. 6023–6032 (2019)
Dosovitskiy, A., Springenberg, J., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. Adv. Neural. Inf. Process. Syst. 27, 766–774 (2014)
Jenni, S., Favaro, P.: Self-supervised feature learning by learning to spot artifacts. In: Proceedings of The IEEE Conference on Computer Vision And Pattern Recognition, pp. 2733–2742 (2018)
Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., Cremers, D.: Associative deep clustering: training a classification network with no labels. In: German Conference On Pattern Recognition, pp. 18–32 (2018)
Ji, X., Henriques, J., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: Proceedings Of The IEEE/CVF International Conference On Computer Vision, pp. 9865–9874 (2019)
Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9
Hjelm, R., et al.: Learning deep representations by mutual information estimation and maximization. ArXiv Preprint ArXiv:1808.06670 (2018)
Patacchiola, M., Storkey, A.: Self-supervised relational reasoning for representation learning. ArXiv Preprint ArXiv:2006.05849 (2020)
He, X., Yang, X., Zhang, S., Zhao, J., Zhang, Y., Xing, E., Xie, P.: Sample-efficient deep learning for COVID-19 diagnosis based on CT scans. Medrxiv (2020)
Wei, X., Zhang, Y., Gong, Y., Zhang, J., Zheng, N.: Grassmann pooling as compact homogeneous bilinear pooling for fine-grained visual classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 365–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_22
Dubey, A., Gupta, O., Raskar, R., Naik, N.: Maximum-entropy fine-grained classification. ArXiv Preprint ArXiv:1809.05934 (2018)
Wang, Y., Morariu, V., Davis, L.: Learning a discriminative filter bank within a CNN for fine-grained recognition. In: Proceedings Of The IEEE Conference on Computer Vision And Pattern Recognition, ,pp. 4148–4157 (2018)
Gao, Y., Han, X., Wang, X., Huang, W., Scott, M.: Channel interaction networks for fine-grained image categorization. In: Proceedings Of The AAAI Conference On Artificial Intelligence. 34, 10818–10825 (2020)
Chen, Y., Bai, Y., Zhang, W., Mei, T.: Destruction and construction learning for fine-grained image recognition. In: Proceedings Of The IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5157–5166 (2019)
Luo, W., et al,: Cross-X learning for fine-grained visual categorization. In: Proceedings Of The IEEE/CVF International Conference On Computer Vision, pp. 8242–8251 (2019)
He, J., et al.:TransFG: a Transformer Architecture for fine-grained recognition. ArXiv Preprint ArXiv:2103.07976 (2021)
Chen, X., He, K.: Exploring simple Siamese representation learning. In: Proceedings Of The IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Asano, Y., Rupprecht, C.., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. ArXiv Preprint ArXiv:1911.05371 (2019)
Li, J., Zhou, P., Xiong, C., Hoi, S..: Prototypical contrastive learning of unsupervised representations. ArXiv Preprint ArXiv:2005.04966 (2020)
Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., Sutskever, I.: Generative pretraining from pixels. In: International Conference On Machine Learning, pp. 1691–1703 (2020)
Devlin, J., Chang, M., Lee, K.,Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. ArXiv Preprint ArXiv:1810.04805 (2018)
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding by generative pre-training (2018)
Yuan, L., et al.: Tokens-to-token vit: Training vision transformers from scratch on ImageNet. ArXiv Preprint ArXiv:2101.11986 (2021)
Yuan, K., Guo, S., Liu, Z., Zhou, A., Yu, F., Wu, W.:Incorporating convolution designs into visual transformers. ArXiv Preprint ArXiv:2103.11816 (2021)
Li, Y., Zhang, K., Cao, J., Timofte, R., Van Gool, L.: Localvit: Bringing locality to vision transformers. ArXiv Preprint ArXiv:2104.05707 (2021)
Hudson, D., Zitnick, C.: Generative adversarial transformers. ArXiv Preprint ArXiv:2103.01209 (2021)
Rao, Y., Zhao, W., Liu, B., Lu, J., Zhou, J., Hsieh, C.: Dynamicvit: efficient vision transformers with dynamic token sparsification. Adv. Neural. Inf. Process. Syst. 34, 13937–13949 (2021)
Liang, Y., Ge, C., Tong, Z., Song, Y., Wang, J., Xie, P.: Not all patches are what you need: Expediting vision transformers via token reorganizations. ArXiv Preprint ArXiv:2202.07800 (2022)
Tang, Y., Han, K., Wang, Y., Xu, C., Guo, J., Xu, C., Tao, D.: Patch slimming for efficient vision transformers. In: Proceedings Of The IEEE/CVF Conference On Computer Vision And Pattern Recognition, pp. 12165–12174 (2022)
Acknowledgements
The project was partially funded by KTH Digital Futures and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, H., Baldassarre, F., Azizpour, H. (2023). Learnable Masked Tokens for Improved Transferability of Self-supervised Vision Transformers. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13715. Springer, Cham. https://doi.org/10.1007/978-3-031-26409-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-26409-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26408-5
Online ISBN: 978-3-031-26409-2
eBook Packages: Computer ScienceComputer Science (R0)