Skip to main content

Online Learning of Convex Sets on Graphs

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13716))

Abstract

We study online learning of general convex sets and halfspaces on graphs. While online learning of halfspaces in Euclidean space is a classical learning problem, the corresponding problem on graphs is understudied. In this context, a set of vertices is convex if it contains all connecting shortest paths and a halfspace is a convex set whose complement is also convex. We discuss mistake bounds based on the Halving algorithm and shortest path covers. Halving achieves near-optimal bounds but is inefficient in general. The shortest path cover based algorithm is efficient but provides optimal bounds only for restricted graph families such as trees. To mitigate the weaknesses of both approaches, we propose a novel polynomial time algorithm which achieves near-optimal bounds on graphs that are \(K_{2,k}\) minor-free for some constant \(k\in \mathbb {N}\). In contrast to previous mistake bounds on graphs, which typically depend on the induced cut of the labelling, our bounds only depend on the graph itself. Finally, we discuss the agnostic version of this problem and introduce an adaptive variant of Halving for k-intersections of halfspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    Google Scholar 

  2. Ben-David, S., Pál, D., Shalev-Shwartz, S.: Agnostic online learning. In: COLT (2009)

    Google Scholar 

  3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boley, M., Gärtner, T., Grosskreutz, H.: Formal concept sampling for counting and threshold-free local pattern mining. In: ICDM (2010)

    Google Scholar 

  5. Boley, M., Horváth, T., Poigné, A., Wrobel, S.: Listing closed sets of strongly accessible set systems with applications to data mining. Theoret. Comput. Sci. 411(3), 691–700 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bressan, M., Cesa-Bianchi, N., Lattanzi, S., Paudice, A.: Exact recovery of clusters in finite metric spaces using oracle queries. In: COLT (2021)

    Google Scholar 

  7. Cesa-Bianchi, N., Gentile, C., Vitale, F.: Fast and optimal prediction on a labeled tree. In: COLT (2009)

    Google Scholar 

  8. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G.: A correlation clustering approach to link classification in signed networks. In: COLT (2012)

    Google Scholar 

  9. Cesa-Bianchi, N., Gentile, C., Vitale, F., Zappella, G.: Random spanning trees and the prediction of weighted graphs. JMLR 14(1), 1251–1284 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Cesa-Bianchi, N., Lugosi, G.: Prediction, learning, and games (2006)

    Google Scholar 

  11. Coelho, E.M.M., Dourado, M.C., Sampaio, R.M.: Inapproximability results for graph convexity parameters. Theoret. Comput. Sci. 600, 49–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Csikós, M., Mustafa, N.H., Kupavskii, A.: Tight lower bounds on the VC-dimension of geometric set systems. JMLR 20(1), 2991–2998 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Diestel, R.: Graph Theory, 5th edn. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-53622-3

  14. Duchet, P.: Convex sets in graphs, II. Minimal path convexity. J. Combinat. Theor. Ser. B 44(3), 307–316 (1988)

    Google Scholar 

  15. Farber, M., Jamison, R.E.: Convexity in Graphs and Hypergraphs. SIAM J. Algeb. Discrete Methods 7(3), 433–444 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Frances, M., Litman, A.: Optimal mistake bound learning is hard. Inf. Comput. 144(1), 66–82 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ganter, B.: Random extents and random closure systems. In: CLA, vol. 959, pp. 309–318 (2011)

    Google Scholar 

  18. Gärtner, T., Garriga, G.C.: The cost of learning directed cuts. In: ECMLPKDD (2007)

    Google Scholar 

  19. Glantz, R., Meyerhenke, H.: On finding convex cuts in general, bipartite and plane graphs. Theoret. Comput. Sci. 695, 54–73 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Herbster, M., Lever, G., Pontil, M.: Online prediction on large diameter graphs. In: NIPS (2008)

    Google Scholar 

  21. Herbster, M., Pasteris, S., Ghosh, S.: Online prediction at the limit of zero temperature. In: NIPS (2015)

    Google Scholar 

  22. Herbster, M., Pontil, M.: Prediction on a graph with a perceptron. In: NIPS (2006)

    Google Scholar 

  23. Herbster, M., Pontil, M., Wainer, L.: Online learning over graphs. In: ICML (2005)

    Google Scholar 

  24. Horváth, T., Turán, G.: Learning logic programs with structured background knowledge. Artif. Intell. 128(1–2), 31–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kearns, M.J., Vazirani, U.: An introduction to computational learning theory (1994)

    Google Scholar 

  26. Kleinberg, J.: Detecting a network failure. Int. Math. 1(1), 37–55 (2004)

    MathSciNet  MATH  Google Scholar 

  27. Kranakis, E., Krizanc, D., Ruf, B., Urrutia, J., Woeginger, G.: The VC-dimension of set systems defined by graphs. Discret. Appl. Math. 77(3), 237–257 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)

    Article  Google Scholar 

  29. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Missura, O., Gärtner, T.: Predicting dynamic difficulty. In: NIPS (2011)

    Google Scholar 

  32. Novikoff, A.B.: On convergence proofs on perceptrons. In: Symposium on the Mathematical Theory of Automata (1962)

    Google Scholar 

  33. Pelayo, I.M.: Geodesic convexity in graphs. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2

  34. Rosenblatt, F.: The Perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  35. Seiffarth, F., Horváth, T., Wrobel, S.: Maximal closed set and half-space separations in finite closure systems. In: ECMLPKDD (2019)

    Google Scholar 

  36. Stadtländer, E., Horváth, T., Wrobel, S.: Learning weakly convex sets in metric spaces. In: ECMLPKDD (2021)

    Google Scholar 

  37. Thiessen, M., Gärtner, T.: Active learning of convex halfspaces on graphs. In: NeurIPS (2021)

    Google Scholar 

  38. van de Vel, M.L.: Theory of convex structures (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Thiessen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thiessen, M., Gärtner, T. (2023). Online Learning of Convex Sets on Graphs. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13716. Springer, Cham. https://doi.org/10.1007/978-3-031-26412-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26412-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26411-5

  • Online ISBN: 978-3-031-26412-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics