Skip to main content

Deep Active Learning for Detection of Mercury’s Bow Shock and Magnetopause Crossings

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Accurate and timely detection of bow shock and magnetopause crossings is essential for understanding the dynamics of a planet’s magnetosphere. However, for Mercury, due to the variable nature of its magnetosphere, this remains a challenging task. Existing approaches based on geometric equations only provide average boundary shapes, and can be hard to generalise to environments with variable conditions. On the other hand, data-driven methods require large amounts of annotated data to account for variations, which can scale up the costs quickly. We propose to solve this problem with machine learning. To this end, we introduce a suitable dataset, prepared by processing raw measurements from NASA’s MESSENGER (MErcury Surface, Space Environment, GEochemistry, and Ranging) mission and design a five-class supervised learning problem. We perform an architectural search to find a suitable model, and report our best model, a Convolutional Recurrent Neural Network (CRNN), achieves a macro F1 score of 0.82 with accuracies of approximately 80% and 88% on the bow shock and magnetopause crossings, respectively. Further, we introduce an approach based on active learning that includes only the most informative orbits from the MESSENGER dataset measured by Shannon entropy. We observe that by employing this technique, the model is able to obtain near maximal information gain by training on just two Mercury years worth of data, which is about 10% of the entire dataset. This has the potential to significantly reduce the need for manual labeling. This work sets the ground for future machine learning endeavors in this direction and may be highly relevant to future missions such as BepiColombo, which is expected to enter orbit around Mercury in December 2025.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The apoapsis of an elliptic orbit is the point farthest away from the planet.

  2. 2.

    The position of the event in the window should not matter.

  3. 3.

    \( \triangle ^{n-1} {:}{=}\{(p_1, p_2, \dots , p_n) \in \mathbb {R}^n \mid \forall i: p_i \ge 0, \sum _{i = 1}^{n}p_i = 1\} \subseteq [0, 1]^n\).

  4. 4.

    All plots for the entire test set are made available in the code repository linked in Sect. 1.

References

  1. Alexeev, I.I., Belenkaya, E.S., Bobrovnikov, S.Y., Kalegaev, V.V.: Modelling of the electromagnetic field in the interplanetary space and in the earth’s magnetosphere. Space Sci. Rev. 107(1), 7–26 (2003)

    Article  Google Scholar 

  2. Alexeev, I.I., et al.: Mercury’s magnetospheric magnetic field after the first two messenger flybys. Icarus 209(1), 23–39 (2010)

    Article  Google Scholar 

  3. Alexeev, I., et al.: A global magnetic model of saturn’s magnetosphere and a comparison with cassini soi data. Geophys. Res. Lett. 33(8), 1–4 (2006)

    Article  Google Scholar 

  4. Amiriparian, S., et al.: Recognition of echolalic autistic child vocalisations utilising convolutional recurrent neural networks (2018)

    Google Scholar 

  5. Amiriparian, S., Cummins, N., Julka, S., Schuller, B.: Deep convolutional recurrent neural network for rare acoustic event detection. In: Proceedings of DAGA, pp. 1522–1525 (2018)

    Google Scholar 

  6. Anderson, B.J., et al.: The magnetic field of mercury. Space Sci. Rev. 152(1), 307–339 (2010)

    Article  Google Scholar 

  7. Belenkaya, E., Bobrovnikov, S.Y., Alexeev, I., Kalegaev, V., Cowley, S.: A model of jupiter’s magnetospheric magnetic field with variable magnetopause flaring. Planet. Space Sci. 53(9), 863–872 (2005)

    Article  Google Scholar 

  8. Benkhoff, J., et al.: Bepicolombo-comprehensive exploration of mercury: mission overview and science goals. Planet. Space Sci. 58(1–2), 2–20 (2010)

    Article  Google Scholar 

  9. Fairfield, D.H.: Average and unusual locations of the earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700–6716 (1971)

    Article  Google Scholar 

  10. Haaland, S., et al.: Characteristics of the flank magnetopause: mms results. J. Geophys. Res.: Space Phys. 125(3), e2019JA027623 (2020)

    Google Scholar 

  11. Jelínek, K., Němeček, Z., Šafránková, J.: A new approach to magnetopause and bow shock modeling based on automated region identification. J. Geophys. Res.: Space Phys. 117(A5) (2012)

    Google Scholar 

  12. Johnson, C.L., et al.: Messenger observations of mercury’s magnetic field structure. J. Geophys. Res.: Planets 117(E12) (2012)

    Google Scholar 

  13. Kraeft, S.K.: Detection and analysis of cancer cells in blood and bone marrow using a rare event imaging system. Clin. Cancer Res. 6(2), 434–442 (2000)

    Google Scholar 

  14. Lin, R., Zhang, X., Liu, S., Wang, Y., Gong, J.: A three-dimensional asymmetric magnetopause model. J. Geophys. Res.: Space Phys. 115(A4) (2010)

    Google Scholar 

  15. Nguyen, G., Aunai, N., Michotte de Welle, B., Jeandet, A., Fontaine, D.: Automatic detection of the earth bow shock and magnetopause from in-situ data with machine learning. In: Annales Geophysicae Discussions, pp. 1–22 (2019)

    Google Scholar 

  16. Nikolaou, N., et al.: Lessons learned from the 1st ariel machine learning challenge: correcting transiting exoplanet light curves for stellar spots. arXiv preprint arXiv:2010.15996 (2020)

  17. Philpott, L.C., Johnson, C.L., Anderson, B.J., Winslow, R.M.: The shape of mercury’s magnetopause: the picture from messenger magnetometer observations and future prospects for bepicolombo. J. Geophys. Res.: Space Phys. 125(5), e2019JA027544 (2020)

    Google Scholar 

  18. Ren, P., et al.: A survey of deep active learning. ACM Comput. Surv. (CSUR) 54(9), 1–40 (2021)

    Article  Google Scholar 

  19. Settles, B.: Active learning. Synth. Lect. Artif. Intell. Mach. Learn. 6(1), 1–114 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Shue, J.H., et al.: A new functional form to study the solar wind control of the magnetopause size and shape. J. Geophys. Res.: Space Phys. 102(A5), 9497–9511 (1997)

    Article  Google Scholar 

  21. Sibeck, D.G., Lopez, R., Roelof, E.C.: Solar wind control of the magnetopause shape, location, and motion. J. Geophys. Res.: Space Phys. 96(A4), 5489–5495 (1991)

    Article  Google Scholar 

  22. Slavin, J.A.: Mercury’s magnetosphere. Adv. Space Res. 33(11), 1859–1874 (2004)

    Article  Google Scholar 

  23. Wang, Y., et al.: A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations. J. Geophys. Res.: Space Phys. 118(5), 2173–2184 (2013)

    Article  MathSciNet  Google Scholar 

  24. Winslow, R.M., et al.: Mercury’s magnetopause and bow shock from messenger magnetometer observations. J. Geophys. Res.: Space Phys. 118(5), 2213–2227 (2013)

    Article  Google Scholar 

  25. Zhong, J.: Mercury’s three-dimensional asymmetric magnetopause. J. Geophys. Res.: Space Phys. 120(9), 7658–7671 (2015)

    Article  Google Scholar 

  26. Zurbuchen, T.H., et al.: Messenger observations of the spatial distribution of planetary ions near mercury. Science 333(6051), 1862–1865 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from Europlanet 2024 RI that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 871149.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahib Julka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Julka, S., Kirschstein, N., Granitzer, M., Lavrukhin, A., Amerstorfer, U. (2023). Deep Active Learning for Detection of Mercury’s Bow Shock and Magnetopause Crossings. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13716. Springer, Cham. https://doi.org/10.1007/978-3-031-26412-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26412-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26411-5

  • Online ISBN: 978-3-031-26412-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics