Skip to main content

Learning to Control Local Search for Combinatorial Optimization

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13717))

Abstract

Combinatorial optimization problems are encountered in many practical contexts such as logistics and production, but exact solutions are particularly difficult to find and usually NP-hard for considerable problem sizes. To compute approximate solutions, a zoo of generic as well as problem-specific variants of local search is commonly used. However, which variant to apply to which particular problem is difficult to decide even for experts.

In this paper we identify three independent algorithmic aspects of such local search algorithms and formalize their sequential selection over an optimization process as Markov Decision Process (MDP). We design a deep graph neural network as policy model for this MDP, yielding a learned controller for local search called NeuroLS. Ample experimental evidence shows that NeuroLS is able to outperform both, well-known general purpose local search controllers from the field of Operations Research as well as latest machine learning-based approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/jokofa/NeuroLS.

References

  1. Aarts, E., Aarts, E.H., Lenstra, J.K.: Local search in Combinatorial Optimization. Princeton University Press, Princeton (2003)

    Book  MATH  Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

  4. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimization: a methodological tour d’horizon. Eur. J. Oper. Res. 290(2), 405–421 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blackstone, J.H., Phillips, D.T., Hogg, G.L.: A state-of-the-art survey of dispatching rules for manufacturing job shop operations. Int. J. Prod. Res. 20(1), 27–45 (1982)

    Article  Google Scholar 

  6. Chen, X., Tian, Y.: Learning to perform local rewriting for combinatorial optimization. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  7. Clarke, G., Wright, J.W.: Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 12(4), 568–581 (1964)

    Article  Google Scholar 

  8. Dabney, W., Ostrovski, G., Silver, D., Munos, R.: Implicit quantile networks for distributional reinforcement learning. In: International Conference on Machine Learning, pp. 1096–1105. PMLR (2018)

    Google Scholar 

  9. Falkner, J.K., Schmidt-Thieme, L.: Learning to solve vehicle routing problems with time windows through joint attention. arXiv preprint arXiv:2006.09100 (2020)

  10. Gasse, M., Chételat, D., Ferroni, N., Charlin, L., Lodi, A.: Exact combinatorial optimization with graph convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  11. Gendreau, M., Potvin, J.Y., et al.: Handbook of Metaheuristics, vol. 2. Springer, New York (2010). https://doi.org/10.1007/978-0-387-74759-0

    Book  MATH  Google Scholar 

  12. Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. Groër, C., Golden, B., Wasil, E.: A library of local search heuristics for the vehicle routing problem. Math. Program. Comput. 2(2), 79–101 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  15. Hottung, A., Kwon, Y.D., Tierney, K.: Efficient active search for combinatorial optimization problems. arXiv preprint arXiv:2106.05126 (2021)

  16. Hottung, A., Tierney, K.: Neural large neighborhood search for the capacitated vehicle routing problem. arXiv preprint arXiv:1911.09539 (2019)

  17. Hu, H., Zhang, X., Yan, X., Wang, L., Xu, Y.: Solving a new 3D bin packing problem with deep reinforcement learning method. arXiv preprint arXiv:1708.05930 (2017)

  18. Hudson, B., Li, Q., Malencia, M., Prorok, A.: Graph neural network guided local search for the traveling salesperson problem. arXiv preprint arXiv:2110.05291 (2021)

  19. Joshi, C.K., Laurent, T., Bresson, X.: An efficient graph convolutional network technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227 (2019)

  20. Karalias, N., Loukas, A.: Erdos goes neural: an unsupervised learning framework for combinatorial optimization on graphs. Adv. Neural. Inf. Process. Syst. 33, 6659–6672 (2020)

    Google Scholar 

  21. Khalil, E., Dai, H., Zhang, Y., Dilkina, B., Song, L.: Learning combinatorial optimization algorithms over graphs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  22. Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep policy dynamic programming for vehicle routing problems. arXiv preprint arXiv:2102.11756 (2021)

  24. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems! arXiv preprint arXiv:1803.08475 (2018)

  25. Kwon, Y.D., Choo, J., Kim, B., Yoon, I., Gwon, Y., Min, S.: Pomo: policy optimization with multiple optima for reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 21188–21198 (2020)

    Google Scholar 

  26. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4), 699–719 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and applications. In: Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 129–168. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4_5

    Chapter  Google Scholar 

  28. Lu, H., Zhang, X., Yang, S.: A learning-based iterative method for solving vehicle routing problems. In: International Conference on Learning Representations (2019)

    Google Scholar 

  29. Ma, Y., Li, J., Cao, Z., Song, W., Zhang, L., Chen, Z., Tang, J.: Learning to iteratively solve routing problems with dual-aspect collaborative transformer. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  30. Mazyavkina, N., Sviridov, S., Ivanov, S., Burnaev, E.: Reinforcement learning for combinatorial optimization: a survey. Comput. Oper. Res. 134, 105400 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11), 1097–1100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  32. Morris, C., et al.: Weisfeiler and leman go neural: higher-order graph neural networks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 4602–4609 (2019)

    Google Scholar 

  33. Nair, V., et al.: Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349 (2020)

  34. Nazari, M., Oroojlooy, A., Snyder, L., Takác, M.: Reinforcement learning for solving the vehicle routing problem. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  35. d O Costa, P.R., Rhuggenaath, J., Zhang, Y., Akcay, A.: Learning 2-opt heuristics for the traveling salesman problem via deep reinforcement learning. In: Asian Conference on Machine Learning, pp. 465–480. PMLR (2020)

    Google Scholar 

  36. Park, J., Bakhtiyar, S., Park, J.: Schedulenet: learn to solve multi-agent scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051 (2021)

  37. Park, J., Chun, J., Kim, S.H., Kim, Y., Park, J.: Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning. Int. J. Prod. Res. 59(11), 3360–3377 (2021)

    Article  Google Scholar 

  38. Perron, L., Furnon, V.: Or-tools. https://developers.google.com/optimization/

  39. Sels, V., Gheysen, N., Vanhoucke, M.: A comparison of priority rules for the job shop scheduling problem under different flow time-and tardiness-related objective functions. Int. J. Prod. Res. 50(15), 4255–4270 (2012)

    Article  Google Scholar 

  40. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  41. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thyssens, D., Falkner, J., Schmidt-Thieme, L.: Supervised permutation invariant networks for solving the CVRP with bounded fleet size. arXiv preprint arXiv:2201.01529 (2022)

  43. Toth, P., Vigo, D.: The vehicle routing problem. SIAM (2002)

    Google Scholar 

  44. Tsang, E.: Foundations of constraint satisfaction: the classic text. BoD-Books on Demand (2014)

    Google Scholar 

  45. Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A.: New benchmark instances for the capacitated vehicle routing problem. Eur. J. Oper. Res. 257(3), 845–858 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  47. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  48. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  49. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  50. Voudouris, C., Tsang, E.P., Alsheddy, A.: Guided local search. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 321–361. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-1665-5_11

    Chapter  Google Scholar 

  51. Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics for solving routing problems. IEEE Trans. Neural Netw. Learn. Syst. 33(9), 5057–5069 (2021)

    Article  MathSciNet  Google Scholar 

  52. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 4–24 (2020)

    Article  MathSciNet  Google Scholar 

  53. Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P.S., Chi, X.: Learning to dispatch for job shop scheduling via deep reinforcement learning. Adv. Neural. Inf. Process. Syst. 33, 1621–1632 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Federal Ministry of Education and Research (BMBF), project “Learning to Optimize” (01IS20013A:L2O) and the German Federal Ministry for Economic Affairs and Climate Action (BMWK), within the IIP-Ecosphere project (01MK20006D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas K. Falkner .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 288 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falkner, J.K., Thyssens, D., Bdeir, A., Schmidt-Thieme, L. (2023). Learning to Control Local Search for Combinatorial Optimization. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13717. Springer, Cham. https://doi.org/10.1007/978-3-031-26419-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26419-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26418-4

  • Online ISBN: 978-3-031-26419-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics