Skip to main content

Bayesian Multi-head Convolutional Neural Networks with Bahdanau Attention for Forecasting Daily Precipitation in Climate Change Monitoring

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

General Circulation Models (GCMs) are established numerical models for simulating multiple climate variables, decades into the future. GCMs produce such simulations at coarse resolution (100 to 600 km), making them inappropriate to monitor climate change at the local regional level. Downscaling approaches are usually adopted to infer the statistical relationship between the coarse simulations of GCMs and local observations and use the relationship to evaluate the simulations at a finer scale. In this paper, we propose a novel deep learning framework for forecasting daily precipitation values via downscaling. Our framework, named Precipitation CNN or PCNN, employs multi-head convolutional neural networks (CNNs) followed by Bahdanau attention blocks and an uncertainty quantification component with Bayesian inference. We apply PCNN to downscale the daily precipitation above the New Jersey portion of the Hackensack-Passaic watershed. Experiments show that PCNN is suitable for this task, reproducing the daily variability of precipitation. Moreover, we produce local-scale precipitation projections for multiple periods into the future (up to year 2100).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, K., Shahid, S., Haroon, S.B., Xiao-Jun, W.: Multilayer perceptron neural network for downscaling rainfall in arid region: a case study of Baluchistan, Pakistan. J. Earth Syst. Sci. 124(6), 1325–1341 (2015). https://doi.org/10.1007/s12040-015-0602-9

    Article  Google Scholar 

  2. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  3. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  4. Fang, J., Zhu, J., Wang, S., Yue, C., Shen, H.: Global warming, human-induced carbon emissions, and their uncertainties. Sci. China Earth Sci. 54(10), 1458–1468 (2011). https://doi.org/10.1007/s11430-011-4292-0

    Article  Google Scholar 

  5. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.L.: A novel deep learning approach to the statistical downscaling of temperatures for monitoring climate change. In: The 6th International Conference on Machine Learning and Soft Computing. ACM (2022). https://doi.org/10.1145/3523150.3523151

  6. Gerges, F., Boufadel, M.C., Bou-Zeid, E., Nassif, H., Wang, J.T.: A novel Bayesian deep learning approach to the downscaling of wind speed with uncertainty quantification. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds.) Advances in Knowledge Discovery and Data Mining, PAKDD 2022. LNCS, vol. 13282, pp. 55–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05981-0_5

  7. Gerges, F., Shih, F., Azar, D.: Automated diagnosis of acne and rosacea using convolution neural networks. In: 2021 4th International Conference on Artificial Intelligence and Pattern Recognition, pp. 607–613 (2021)

    Google Scholar 

  8. Gerges, F., Shih, F.Y.: A convolutional deep neural network approach for skin cancer detection using skin lesion images. Int. J. Electr. Comput. Eng. 15(8), 475–478 (2021)

    Google Scholar 

  9. Ghosh, S.: SVM-PGSL coupled approach for statistical downscaling to predict rainfall from GCM output. J, Geophys. Res. Atmos. 115(D22) (2010)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)

    MATH  Google Scholar 

  11. Griffies, S.M., et al.: The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24(13), 3520–3544 (2011)

    Article  Google Scholar 

  12. Hu, W., Scholz, Y., Yeligeti, M., von Bremen, L., Schroedter-Homscheidt, M.: Statistical downscaling of wind speed time series data based on topographic variables. In: EGU General Assembly Conference Abstracts, pp. EGU21-12734 (2021)

    Google Scholar 

  13. Jiang, H., et al.: Tracing h alpha fibrils through Bayesian deep learning. Astrophys. J. Suppl. Ser. 256(1), 20 (2021)

    Article  MathSciNet  Google Scholar 

  14. Khan, Z.N., Ahmad, J.: Attention induced multi-head convolutional neural network for human activity recognition. Appl. Soft Comput. 110, 107671 (2021)

    Article  Google Scholar 

  15. Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using Bayesian neural networks in classification: application to biomedical image segmentation. Comput. Stat. Data Anal. 142, 106816 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Linmans, J., van der Laak, J., Litjens, G.: Efficient out-of-distribution detection in digital pathology using multi-head convolutional neural networks. In: MIDL, pp. 465–478 (2020)

    Google Scholar 

  17. Liu, J.: Variable selection with rigorous uncertainty quantification using deep Bayesian neural networks: posterior concentration and Bernstein-von mises phenomenon. In: International Conference on Artificial Intelligence and Statistics, pp. 3124–3132. PMLR (2021)

    Google Scholar 

  18. Liu, Z., Wan, M., Guo, S., Achan, K., Yu, P.S.: Basconv: aggregating heterogeneous interactions for basket recommendation with graph convolutional neural network. In: Proceedings of the 2020 SIAM International Conference on Data Mining, pp. 64–72. SIAM (2020)

    Google Scholar 

  19. Livneh, B., et al.: A spatially comprehensive, hydrometeorological data set for Mexico, the us, and southern Canada 1950–2013. Sci. Data 2(1), 1–12 (2015)

    Article  Google Scholar 

  20. Misra, S., Sarkar, S., Mitra, P.: Statistical downscaling of precipitation using long short-term memory recurrent neural networks. Theor. Appl. Climatol. 134(3), 1179–1196 (2018)

    Article  Google Scholar 

  21. Myojin, T., Hashimoto, S., Ishihama, N.: Detecting uncertain BNN outputs on FPGA using monte Carlo dropout sampling. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12397, pp. 27–38. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61616-8_3

    Chapter  Google Scholar 

  22. Myojin, T., Hashimoto, S., Mori, K., Sugawara, K., Ishihama, N.: Improving reliability of object detection for lunar craters using monte Carlo dropout. In: Tetko, I.V., Kůrková, V., Karpov, P., Theis, F. (eds.) ICANN 2019. LNCS, vol. 11729, pp. 68–80. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30508-6_6

    Chapter  Google Scholar 

  23. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: spatial CNN for traffic scene understanding. In: 32nd AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  24. Pang, B., Yue, J., Zhao, G., Xu, Z.: Statistical downscaling of temperature with the random forest model. Adv. Meteorol. 2017 (2017)

    Google Scholar 

  25. Sun, L., Lan, Y.: Statistical downscaling of daily temperature and precipitation over china using deep learning neural models: Localization and comparison with other methods. Int.l J. Climatol. 41(2), 1128–1147 (2021)

    Article  Google Scholar 

  26. Wang, Y., Rocková, V.: Uncertainty quantification for sparse deep learning. In: International Conference on Artificial Intelligence and Statistics, pp. 298–308. PMLR (2020)

    Google Scholar 

  27. Xu, R., Chen, N., Chen, Y., Chen, Z.: Downscaling and projection of multi-cmip5 precipitation using machine learning methods in the upper HAN river Basin. Adv. Meteorol. 2020, 1–17 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bridge Resource Program (BRP) from the New Jersey Department of Transportation. We acknowledge the Working Group on Coupled Modelling of the World Climate Research Program, responsible for CMIP, and we thank the Geophysical Fluid Dynamics Laboratory of NOAA for producing and making available their model output via Earth System Grid Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas Gerges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerges, F., Boufadel, M.C., Bou-Zeid, E., Darekar, A., Nassif, H., Wang, J.T.L. (2023). Bayesian Multi-head Convolutional Neural Networks with Bahdanau Attention for Forecasting Daily Precipitation in Climate Change Monitoring. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13717. Springer, Cham. https://doi.org/10.1007/978-3-031-26419-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26419-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26418-4

  • Online ISBN: 978-3-031-26419-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics