Skip to main content

Online Adaptive Multivariate Time Series Forecasting

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13718))

  • 785 Accesses

Abstract

Multivariate Time Series (MTS) involve multiple time series variables that are interdependent. The MTS follows two dimensions, namely spatial along the different variables composing the MTS and temporal. Both, the complex and the time-evolving nature of MTS data make forecasting one of the most challenging tasks in time series analysis. Typical methods for MTS forecasting are designed to operate in a static manner in time or space without taking into account the evolution of spatio-temporal dependencies among data observations, which may be subject to significant changes. Moreover, it is generally accepted that none of these methods is universally valid for every application. Therefore, we propose an online adaptation of MTS forecasting by devising a fully automated framework for both adaptive input spatio-temporal variables and adequate forecasting model selection. The adaptation is performed in an informed manner following concept-drift detection in both spatio-temporal dependencies and model performance over time. In addition, a well-designed meta-learning scheme is used to automate the selection of appropriate dependence measures and the forecasting model. An extensive empirical study on several real-world datasets shows that our method achieves excellent or on-par results in comparison to the state-of-the-art (SoA) approaches as well as several baselines.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876 and the Federal Ministry of Education and Research of Germany as part of the competence center for machine learning ML2R (01-S18038A).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0.

  2. 2.

    https://www.dropbox.com/sh/z2g0us0nti3nqzg/AAAJ6_6JcGZHN_y10q8XDYa_a?dl=0.

References

  1. Aghabozorgi, S., Seyed Shirkhorshidi, A., Ying Wah, T.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Google Scholar 

  2. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    Google Scholar 

  3. Dissanayake, B., Hemachandra, O., Lakshitha, N., Haputhanthri, D., Wijayasiri, A.: A comparison of ARIMAX, VAR and LSTM on multivariate short-term traffic volume forecasting. In: Conference of Open Innovations Association, FRUCT, pp. 564–570. No. 28, FRUCT Oy (2021)

    Google Scholar 

  4. Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, pp. 155–161 (1997)

    Google Scholar 

  5. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001)

    Google Scholar 

  6. Friedman, J.H., Stuetzle, W.: Projection pursuit regression. J. Am. Stat. Assoc. 76(376), 817–823 (1981)

    Article  MathSciNet  Google Scholar 

  7. Friedman, J.H., et al.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    MathSciNet  Google Scholar 

  8. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on concept drift adaptation. ACM Comput. Surv. (CSUR) 46(4), 1–37 (2014)

    Article  Google Scholar 

  9. González-Vidal, A., Jiménez, F., Gómez-Skarmeta, A.F.: A methodology for energy multivariate time series forecasting in smart buildings based on feature selection. Energy Build. 196, 71–82 (2019)

    Google Scholar 

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). www.deeplearningbook.org

  11. Hyndman, R.J., Wang, E., Laptev, N.: Large-scale unusual time series detection. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 1616–1619. IEEE (2015)

    Google Scholar 

  12. Khiari, J., Moreira-Matias, L., Shaker, A., Ženko, B., Džeroski, S.: MetaBags: bagged meta-decision trees for regression. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 637–652. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_39

    Chapter  Google Scholar 

  13. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: ICML, pp. 487–494 (2000)

    Google Scholar 

  14. Klinkenberg, R., Rüping, S.: Concept drift and the importance of examples. In: Text Mining-Theoretical Aspects and Applications. Citeseer (2002)

    Google Scholar 

  15. Lhermitte, S., Verbesselt, J., Verstraeten, W.W., Coppin, P.: A comparison of time series similarity measures for classification and change detection of ecosystem dynamics. Remote Sens. Environ. 115(12), 3129–3152 (2011)

    Article  Google Scholar 

  16. Mevik, B.H., Wehrens, R., Liland, K.H.: PLS: partial least squares and principal component regression (2018). CRAN.R-project.org/package=pls

  17. Priebe, F.: Dynamic model selection for automated machine learning in time series (2019)

    Google Scholar 

  18. Saadallah, A., Jakobs, M., Morik, K.: Explainable online deep neural network selection using adaptive saliency maps for time series forecasting. In: Oliver, N., Pérez-Cruz, F., Kramer, S., Read, J., Lozano, J.A. (eds.) ECML PKDD 2021. LNCS (LNAI), vol. 12975, pp. 404–420. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86486-6_25

    Chapter  Google Scholar 

  19. Saadallah, A., Moreira-Matias, L., Sousa, R., Khiari, J., Jenelius, E., Gama, J.: Bright-drift-aware demand predictions for taxi networks. IEEE Trans. Knowl. Data Eng. 32, 234–245 (2018)

    Google Scholar 

  20. Saadallah, A., Priebe, F., Morik, K.: A drift-based dynamic ensemble members selection using clustering for time series forecasting. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds.) ECML PKDD 2019. LNCS (LNAI), vol. 11906, pp. 678–694. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46150-8_40

    Chapter  Google Scholar 

  21. Sagheer, A., Kotb, M.: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems. Sci. Rep. 9(1), 1–16 (2019)

    Article  Google Scholar 

  22. Sardá-Espinosa, A.: Comparing time-series clustering algorithms in R using the dtwclust package. R Package Vignette 12, 41 (2017)

    Google Scholar 

  23. Sun, Q., Jankovic, M.V., Bally, L., Mougiakakou, S.G.: Predicting blood glucose with an LSTM and Bi-LSTM based deep neural network. In: 2018 14th Symposium on Neural Networks and Applications (NEUREL), pp. 1–5. IEEE (2018)

    Google Scholar 

  24. Talagala, T.S., Hyndman, R.J., Athanasopoulos, G., et al.: Meta-learning how to forecast time series. Monash Econometrics Bus. Stat. Work. Papers 6(18), 16 (2018)

    Google Scholar 

  25. Tsay, R.S.: Multivariate Time Series Analysis: with R and Financial Applications. John Wiley & Sons (2013)

    Google Scholar 

  26. Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: multivariate time series forecasting with graph neural networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 753–763 (2020)

    Google Scholar 

  27. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Saadallah .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 190 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadallah, A., Mykula, H., Morik, K. (2023). Online Adaptive Multivariate Time Series Forecasting. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics