Skip to main content

U-Net Inspired Transformer Architecture for Far Horizon Time Series Forecasting

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Time series data is ubiquitous in research as well as in a wide variety of industrial applications. Effectively analyzing the available historical data and providing insights into the far future allows us to make effective decisions. Recent research has witnessed the superior performance of transformer-based architectures, especially in the regime of far horizon time series forecasting. However, the current state of the art sparse Transformer architectures fail to couple down- and upsampling procedures to produce outputs in a similar resolution as the input. We propose a U-Net inspired Transformer architecture named Yformer, based on a novel Y-shaped encoder-decoder architecture that (1) uses direct connection from the downscaled encoder layer to the corresponding upsampled decoder layer in a U-Net inspired architecture, (2) Combines the downscaling/upsampling with sparse attention to capture long-range effects, and (3) stabilizes the encoder-decoder stacks with the addition of an auxiliary reconstruction loss. Extensive experiments have been conducted with relevant baselines on three benchmark datasets, demonstrating an average improvement of 19.82, 18.41% MSE and 13.62, 11.85% MAE in comparison to the baselines for the univariate and the multivariate settings respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/zhouhaoyi/ETDataset.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.

  3. 3.

    https://github.com/18kiran12/Yformer-Time-Series-Forecasting.

References

  1. Ba, L.J., Kiros, J.R., Hinton, G.E.: Layer normalization. CoRR (2016)

    Google Scholar 

  2. Box, G.E.P., Jenkins, G.M.: Some recent advances in forecasting and control. Journal of the Royal Statistical Society. Series C (Appl. Stat.) 17, 91–109 (1968)

    Google Scholar 

  3. Camacho, E.F., Alba, C.B.: Model Predictive Control. Springer, Heidelberg (2013)

    Google Scholar 

  4. Cao, W., Wang, D., Li, J., Zhou, H., Li, L., Li, Y.: Brits: bidirectional recurrent imputation for time series. In: NeurIPS (2018)

    Google Scholar 

  5. Cirstea, R.G., Guo, C., Yang, B., Kieu, T., Dong, X., Pan, S.: Triformer: Triangular, variable-specific attentions for long sequence multivariate time series forecasting. In: IJCAI (2022)

    Google Scholar 

  6. Clevert, D., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). In: ICLR (2016)

    Google Scholar 

  7. Fan, C., et al.: Multi-horizon time series forecasting with temporal attention learning. In: SIGKDD (2019)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)

    Google Scholar 

  10. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. In: OTexts (2018)

    Google Scholar 

  11. Jarrett, D., van der Schaar, M.: Target-embedding autoencoders for supervised representation learning. In: ICLR (2020)

    Google Scholar 

  12. Jawed, S., Rashed, A., Schmidt-Thieme, L.: Multi-step forecasting via multi-task learning. In: IEEE Big Data (2019)

    Google Scholar 

  13. Kieu, T., Yang, B., Guo, C., S. Jensen, C.: Outlier detection for time series with recurrent autoencoder ensembles. In: IJCAI (2019)

    Google Scholar 

  14. Kitaev, N., Kaiser, L., Levskaya, A.: Reformer: The efficient transformer. In: ICLR (2020)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  16. Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: SIGIR (2018)

    Google Scholar 

  17. Le, L., Patterson, A., White, M.: Supervised autoencoders: Improving generalization performance with unsupervised regularizers. In: NeurIPS (2018)

    Google Scholar 

  18. Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: NeurIPS (2019)

    Google Scholar 

  19. Lim, B., Arık, S.Ö., Loeff, N., Pfister, T.: Temporal fusion transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37, 1748–1764 (2021)

    Google Scholar 

  20. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  21. Oreshkin, B.N., Carpov, D., Chapados, N., Bengio, Y.: N-BEATS: neural basis expansion analysis for interpretable time series forecasting. In: ICLR (2020)

    Google Scholar 

  22. Perslev, M., Jensen, M., Darkner, S., Jennum, P.J., Igel, C.: U-time: a fully convolutional network for time series segmentation applied to sleep staging. In: NeurIPS (2019)

    Google Scholar 

  23. Petit, O., Thome, N., Rambour, C., Themyr, L., Collins, T., Soler, L.: U-net transformer: self and cross attention for medical image segmentation. In: International Workshop on MLMI (2021)

    Google Scholar 

  24. Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., Cottrell, G.W.: A dual-stage attention-based recurrent neural network for time series prediction. In: IJCAI (2017)

    Google Scholar 

  25. Rangapuram, S.S., Seeger, M.W., Gasthaus, J., Stella, L., Wang, Y., Januschowski, T.: Deep state space models for time series forecasting. In: NeurIPS (2018)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sagheer, A., Kotb, M.: Time series forecasting of petroleum production using deep lstm recurrent networks. Neurocomputing 323, 203–213 (2019)

    Google Scholar 

  28. Salinas, D., Flunkert, V., Gasthaus, J., Januschowski, T.: Deepar: Probabilistic forecasting with autoregressive recurrent networks. Int. J. Forecast. 36, 1181–1191 (2020)

    Google Scholar 

  29. Sezer, O.B., Gudelek, M.U., Ozbayoglu, A.M.: Financial time series forecasting with deep learning: a systematic literature review: 2005–2019. Appl. Soft Comput. 90 106181(2020)

    Google Scholar 

  30. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  31. Wang, S., Li, B.Z., Khabsa, M., Fang, H., Ma, H.: Linformer: Self-attention with linear complexity. ArXiv (2020)

    Google Scholar 

  32. Wang, Y., Tao, X., Shen, X., Jia, J.: Wide-context semantic image extrapolation. In: CVPR (2019)

    Google Scholar 

  33. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: IJCNN (2017)

    Google Scholar 

  34. Wu, H., Xu, J., Wang, J., Long, M.: Autoformer: decomposition transformers with auto-correlation for long-term series forecasting. In: NeurIPS (2021)

    Google Scholar 

  35. Zhou, H., et al.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: AAAI (2021)

    Google Scholar 

  36. Zhou, H.Y., Guo, J., Zhang, Y., Yu, L., Wang, L., Yu, Y.: nnFormer: interleaved transformer for volumetric segmentation. ArXiv (2021)

    Google Scholar 

  37. Zou, X., Wang, Z., Li, Q., Sheng, W.: Integration of residual network and convolutional neural network along with various activation functions and global pooling for time series classification. Neurocomputing 367, 39–45 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Federal Ministry for Economic Affairs and Climate Action (BMWK), Germany, within the framework of the IIP-Ecosphere project (project number: 01MK20006D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran Madhusudhanan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 389 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Madhusudhanan, K., Burchert, J., Duong-Trung, N., Born, S., Schmidt-Thieme, L. (2023). U-Net Inspired Transformer Architecture for Far Horizon Time Series Forecasting. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics