Skip to main content

ImbalancedLearningRegression - A Python Package to Tackle the Imbalanced Regression Problem

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

This package helps Python users address imbalanced regression problems. Popular Python packages exist for imbalanced classification. However, there is still little Python support for imbalanced regression. Imbalanced regression is a well-known problem that occurs across domains, where a continuous target variable is poorly represented on ranges that are important to the end-user. Here, a re-sampling strategy is applied to modify the distribution of the target variable, biasing it towards the end-user interests so that downstream learning algorithms can be trained on the most relevant cases. The package provides an easy-to-use and extensible implementation of eight state-of-the-art re-sampling methods for regression, including four under-sampling and four over-sampling techniques. Code related to this paper is available at: https://github.com/paobranco/ImbalancedLearningRegression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://pypi.org/project/ImbalancedLearningRegression/.

References

  1. Branco, P., Ribeiro, R.P., Torgo, L.: UBL: an R package for utility-based learning (2016). https://arxiv.org/abs/1604.08079

  2. Branco, P., Torgo, L., Ribeiro, R.P.: A survey of predictive modeling on imbalanced domains. ACM Comput. Surv. (CSUR) 49(2), 1–50 (2016)

    Article  Google Scholar 

  3. Branco, P., Torgo, L., Ribeiro, R.P.: SMOGN: a pre-processing approach for imbalanced regression. In: First International Workshop on Learning with Imbalanced Domains: Theory and Applications, pp. 36–50. PMLR (2017)

    Google Scholar 

  4. Branco, P., Torgo, L., Ribeiro, R.P.: Pre-processing approaches for imbalanced distributions in regression. Neurocomputing 343, 76–99 (2019)

    Article  Google Scholar 

  5. Cordón, I., García, S., Fernández, A., Herrera, F.: Imbalance: Oversampling algorithms for imbalanced classification in r. Knowl.-Based Syst. 161, 329–341 (2018). https://doi.org/10.1016/j.knosys.2018.07.035

    Article  Google Scholar 

  6. De Cock, D.: Ames, iowa: alternative to the boston housing data as an end of semester regression project. J. Stat. Educ. 19(3) (2011)

    Google Scholar 

  7. Hart, P.: The condensed nearest neighbor rule (corresp.). IEEE Trans. Inf. Theory 14(3), 515–516 (1968)

    Google Scholar 

  8. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: 2008 IEEE International Joint Conference on Neural Networks, pp. 1322–1328. IEEE (2008)

    Google Scholar 

  9. Kunz, N.: SMOGN: synthetic minority over-sampling technique for regression with gaussian noise (2020). https://pypi.org/project/smogn

  10. Lemaître, G., Nogueira, F., Aridas, C.K.: Imbalanced-learn: a python toolbox to tackle the curse of imbalanced datasets in machine learning. JMLR 18(17), 1–5 (2017), http://jmlr.org/papers/v18/16-365.html

  11. Menardi, G., Torelli, N.: Training and assessing classification rules with imbalanced data. Data Mining Knowl. Disc. 28(1), 92–122 (2014)

    Article  MathSciNet  Google Scholar 

  12. Ribeiro, R.P.: Utility-based regression. Ph.D. thesis, Dep. Computer Science, Faculty of Sciences - University of Porto (2011)

    Google Scholar 

  13. Tomek, I.: Two modifications of cnn. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)

    Google Scholar 

  14. Torgo, L., Ribeiro, R.P., Pfahringer, B., Branco, P.: SMOTE for regression. In: Correia, L., Reis, L.P., Cascalho, J. (eds.) EPIA 2013. LNCS (LNAI), vol. 8154, pp. 378–389. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40669-0_33

    Chapter  Google Scholar 

  15. Wilson, D.L.: Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 3, 408–421 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Xinzi Hu, Lingyi Kong, and Chengen Lyu for their contributions to the re-sampling implementations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Branco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, W., Kunz, N., Branco, P. (2023). ImbalancedLearningRegression - A Python Package to Tackle the Imbalanced Regression Problem. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics